基于高程图可着陆性分析的无人机可靠自主着陆与避险方法

Reliable Autonomous Landing and Hazard Avoidance of Drones Based on Landability Analysis of Elevation Map

  • 摘要: 无人机在未知环境中自主着陆是一项极具挑战性的任务。为解决这一问题,构建了安全高效的激光着陆系统。该系统基于激光和惯性测量单元(IMU)的感知信息获取定位数据,将点云投影到高程地图坐标系,并利用贝叶斯广义核高程推理法和改进的动态点更新算法,对稀疏的高程地图进行预测、填充和动态更新,从而生成稠密且信息全面的高程地图。随后,通过分析高程地图的地形几何参数,如倾斜度、粗糙度和阶跃度,生成可着陆性分析地图。接着,采用GPU(图形处理器)加速方法,从可着陆性地图中快速搜索出最安全的着陆位置。此外,针对靠近着陆点时激光定位可能退化的问题,提出了一种仅依靠单帧点云的避障策略,最终实现无人机安全着陆。经过多个复杂仿真环境和真实场景的测试验证,该方法均取得了优异的自主安全着陆效果。

     

    Abstract: The autonomous landing of drones in unknown environments poses a highly challenging task. To solve this problem, a safe and efficient LiDAR landing system is constructed. The proposed system leverages positioning data obtained from the perception information of LiDAR and the inertial measurement unit (IMU), projecting point clouds into an elevation map coordinate system. Utilizing Bayesian generalized kernel elevation inference and an enhanced dynamic point update algorithm, the system predicts, fills, and dynamically updates sparse elevation maps to generate dense and comprehensive elevation maps. Subsequently, a landability analysis map is generated through analyzing terrain geometric parameters in the elevation map such as slope, roughness, and step height. Then, the safest landing position is identified quickly from the landability analysis map by a GPU (graphics processing unit) acceleration method. In addition, an obstacle avoidance strategy based only on single frame point cloud is proposed to avoid the degradation of LiDAR localization near the landing point, and finally achieving the safe landing of the drones. The proposed method achieves excellent autonomous and safe landing results in tests in multiple complex simulation environments and real scenarios.

     

/

返回文章
返回