基于动态权重复用的深度局部特征匹配器

A Deep Local Feature Matcher with Dynamic Weight Recycling

  • 摘要: 本文旨在通过堆叠更多的Transformer层,探讨深度Transformer网络对匹配性能的影响,并解决增加Transformer层数导致模型大小线性增长的问题。为此,提出了一种结合动态权重复用技术和特征增强的局部特征匹配器DWR-Matcher。首先,利用深层Transformer网络对提取的局部特征进行特征聚合,其允许相邻Transformer层之间动态复用权重,从而减少模型参数,有效降低因增加网络层数所带来的存储负担。其次,为防止网络过深导致的特征崩溃,引入了特征增强模块,通过残差连接方式增强每个Transformer层的特征表达,以此丰富特征的多样性。最后,在HPatches、InLoc、MegaDepth数据集上进行实验验证,结果显示,在MegaDepth数据集上,DWR-Matcher在5、10和20°的阈值条件下达到了44.20%、61.20% 和74.90% 的相对位姿估计精度,同时参数量减少了8.3 MB,证明了DWR-Matcher在各种复杂场景中的卓越性能。

     

    Abstract: This paper aims to investigate the impact of deep Transformer networks on the matching performance by stacking more Transformer layers, and address the issue of the linear growth in model size as the number of Transformer layers increases. A local feature matcher named DWR-Matcher is proposed, which combines dynamic weight recycling technology and feature enhancement. Firstly, local features are aggregated using deep Transformer networks, which allow dynamic weight recycling between adjacent Transformer layers, thus reducing model parameters and effectively lowering the storage burden caused by increasing the number of network layers. Secondly, a feature enhancement module is introduced to prevent feature collapse due to excessive network depth, and the feature representation of each Transformer layer is enhanced through residual connections, enriching the diversity of features. Finally, experiments are conducted on the HPatches, InLoc, and MegaDepth datasets. The results show that DWR-Matcher achieves relative pose estimation accuracies of 44.20%, 61.20%, and 74.90% on the MegaDepth dataset under thresholds of 5, 10 and 20°, while the number of parameters is reduced by 8.3 MB, demonstrating the excellent performance of DWR-Matcher in various complex scenarios.

     

/

返回文章
返回