Zero-g Simulation of Space Manipulator in Furled Status
GAO Haibo, HAO Feng, DENG Zongquan, LIU Zhen, DING Liang, YUE Honghao
1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; 2. Aerospace Mechanism and Control Key Laboratory of Fundamental Science for National Defense, Harbin Institute of Technology, Harbin 150001, China
Abstract:The zero-g simulation device is designed by using suspender spring and counter weight,and the static gravity compensation formulas of space manipulator's detached body are deduced with gravity compensation theory.Based on the least minimum square theory,an optimization program of suspension force is developed,through which the optimization of multiple torques is transformed into the optimization of a whole target,and the numerical value of each suspension force can be obtained.The model of the zero-g simulation device of space manipulator is built in ADAMS when the length of suspender spring is 1 000 mm.Under the condition that the space manipulator is in stationary state,the relative errors between the optimization results and the simulation results are around 10%.And the bending torque and counter torque generated by the zero-g simulation device can meet the technical requirements when each joint of space manipulator moves at the constant angular speed of 0.5°/s and 1°/s.Therefore,this approach is suitable for zero-g simulation of space manipulator.
[1] Dubowsky S,Papadopoulos E.The kinematics,dynamics,and control of free-flying and free-floating space robotic system[J]. IEEE Transactions on Robotics and Automation,1993,9(5):531-543.
[2] Hirzinger G,Brenner B,Dietrich J,et al.ROTEX-The first remotely controlled robot in space[C]//IEEE International Conference on Robotics and Automation.Piscataway,N J,USA:IEEE,1994:2604-2611.
[3] Preusche C,Reintsema D,Landzettel K,et al.Robotics component verification on ISS ROKVISS-Preliminary results for telepresence[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway,N J,USA:IEEE,2006:4595-4601.
[4] Gefke G G,Carignan C R,Roberts B J,et al.Ranger telerobotic shuttle experiment:Status report[C]//Proceedings of SPIE:vol.4570.Bellingham,WA,USA:SPIE,2001:123-132.
[5] 孙汉旭,王凤翔.加拿大、美国空间机器人研究情况[J]. 航天技术与民品,1999(4):33-35.Sun Hanxu,Wang Fengxiang.The researches of space robot in USA and Canada[J]. Space Technology and Civilian Products,1999(4):33-35.
[6] Russakow J,Rock S M,Khatib O.An operational space formulation for a free-flying,multi-arm space robot[C]//4th International Symposium on Experimental Robotics.Berlin,Germany:Springer-Verlag,1997:448-457.
[7] 梁斌,刘良栋,陈建新,等.舱外自由移动机器人系统[J]. 控制工程,2001(5/6):91-100.Liang Bin,Liu Liangdong,Chen Jianxin,et al.Extravehicular free-moving robot system[J]. Control Engineering of China,2001(5/6):91-100.
[8] Nechyba M C,Xu Y S.Human-robot cooperation in space:SM2 for new space station structure[J]. IEEE Robotics & Automation Magazine,1995,2(4):4-11.
[9] Xu Y S,Brown B,Friedman M,et al.Control system of self-mobile space manipulator[C]//IEEE International Conference on Robotics and Automation.Piscataway,N J,USA:IEEE,1992:866-871.
[10] 李成,梁斌.基丁事件的EMR遥操作自适应规划与控制方法[J]. 航天控制,2001,19(3):17-22.Li Cheng,Liang Bin.Event-based adaptive planning and control method for EMR teleoperation[J]. Spaceflight Control,2001,19(3):17-22.