周武, 赵春霞. SLAM问题的一种优化数据关联算法[J]. 机器人, 2009, 31(3): 217-223..
ZHOU Wu, ZHAO Chun-xia. An Optimized Data Association Solution for SLAM. ROBOT, 2009, 31(3): 217-223..
摘要联合相容分支定界算法(JCBB)存在"计算复杂度高"等缺点.为了优化JCBB算法在准确度和计算复杂度方面的性能,对它进行了三处改进:一是采用互斥准则和最优准则来提高关联的准确度;二是根据机器人的位姿和传感器的测量范围将数据关联限定在局部可能区域中;三是自适应地进行分批数据关联.仿真实验结果表明,优化JCBB算法(OJCBB)在保证准确度的同时大大降低了计算复杂度.Victoria Park Dataset实验表明,OJCBB算法的数据关联结果是可信的,而且OJCBB算法的计算效率远远高于JCBB算法.
Abstract:Joint compatibility branch and bound(JCBB) owns some disadvantages like highly computational complexity. Three improvements are introduced to optimize JCBB’s performance on accuracy and computational complexity.Firstly,data association accuracy is improved with the help of mutual exclusion rule and optimization rule.Secondly,the data association is limited in potential local region,which is determined by robot pose and sensor measurement range.Thirdly,data association is adaptively realized in a divisive manner.Simulation results indicate that optimized JCBB(OJCBB) can ensure accuracy and reduce computational complexity simultaneously.Experimental results with Victoria Park Dataset indicate that the OJCBB data association results are reliable,and the computational efficiency of OJCBB is much better than mat of JCBB.
[1] Smith R C,Cheesman E On the representation and estimation of spatial uncertainty[J].The International Journal of Robotics Research,1987,5(4):56~68.
[2] Durrant-Whyte H E Uncertain geometry in robotics[J].IEEE Journal of Robotics and Automation,1988,4(1):23~31.
[3] Smith R C,Self M,Cheeseman E Estimating uncertain spatial relationships in robotics[A].Autonomous Robot Vehicles[M].New York,USA:Springer-Verlag,1990.167~193.
[4] Dissanayake M W M G,Newman E Clark S,et al.A solution to the simultaneous localization and map building (SLAM) problem[J] ,IEEE Transactions on Robotics and Automation,2001,17(3):229~241.
[5] Bailey T.Mobile Robot Localisation and Mapping in Extensive Outdoor Environments[D].Sydney,Australia:Sydney University,2002.
[6] Neira J,Tardos J D.Data association in stochastic mapping using the joint compatibility test[J].IEEE Transactions on Robotics and Automation,2001,17(6):890~897.
[7] Reid D B.An algorithm for tracking multiple targets[J].IEEE Transactions on Automatic Control,1979,24(6):843~854.
[8] Davey S J.Simultaneous localization and map building using the probabilistic multi-hypothesis tracker[J].IEEE Transactions on Robotics,2007,23(2):271~280.
[9] 郭剑辉,赵春霞,石杏喜.一种改进的联合相容SLAM数据关联方法[J].仪器仪表学报,2008,29(11):2260~2265.Guo Jian-hui,Zhao Chun-xia,Shi Xing-xi.Improved joint compatibility data association approach for simultaneous localization and map building (SLAM)[J].Chinese Journal of Scientific Instrument,2008,29(11):2260~2265.
[10] Guivant J E,Nebot E M.Optimization of the simultaneous localization and map-building algorithm for real-time implementation[J].IEEE Transactions on Robotics and Automation,2001,17(3):242~257.