A Humanoid Robot Control System with SSVEP-based Asynchronous Brain-Computer Interface
DENG Zhidong, LI Xiuquan, ZHENG Kuanhao, YAO Wentao
State Key Laboratory of Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
邓志东, 李修全, 郑宽浩, 姚文韬. 一种基于SSVEP的仿人机器人异步脑机接口控制系统[J]. 机器人, 2011, 33(2): 129-135..
DENG Zhidong, LI Xiuquan, ZHENG Kuanhao, YAO Wentao. A Humanoid Robot Control System with SSVEP-based Asynchronous Brain-Computer Interface. ROBOT, 2011, 33(2): 129-135..
Abstract:A feature extraction method is proposed for steady-state visual evoked potential(SSVEP) idle state detection. By designing a two-level classifier structure,SSVEP-based asynchronous brain-computer interface(BCI) is established. A wireless sensor network(WSN) hardware node embedded with TI CC2430 is implemented for remote transmission of robot control command.The developed humanoid robot control system has multiple control modes,such as mind control, voice interaction,joystick input,machine vision,and obstacle avoidance.The effectiveness of brain-computer interface asynchronous control is validated through experiments on SSVEP idle-state detection.
[1] 张钹,王田苗,邓志东,等.机器人发展战略研究报告:历程、技术、产业、标准与政策[M].北京:兵器工业出版社,2009.Zhang B,WangTM,Deng Z D,et al.Report on robot development strategy study:History,technology,industry,standard and policy[M].Beijing:Weapon Industry Press,2009.
[2] Wolpaw J R,Birbaumer N,McFarland D J,et al.Braincomputer interfaces for communication and control[J].Journal of Clinical Neurophysiology,2002,113(6):767-791.
[3] Scherer R,Muller G R,Neuper C,et al.An asynchronously controlled EEG-based virtual keyboard:Improvement of thespelling rate[J].IEEE Transactions on Biomedical Engineering,2004,5l(6):979-984.
[4] Trejo L J,Rosipal R,Matthews B.Brain-computer interfaces for 1-D and 2-D cursor control:Designs using volitional control of the EEG spectrum or steady-state visual evoked potentials[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2006,14(2):225-229.
[5] Wang Y J,Wang R P,Gao X R,et al.A practical VEP-based brain-computer interface[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2006,14(2):234-239.
[6] Li Y,Gao X R,Liu H S,et al.Classification of single-trial electroencephalogram during finger movement[J].IEEE Transactions on Biomedical Engineering,2004,51(6):1019-1025.
[7] Berger T W,Chapin J K,Gerhardt G A,et al.International assessment of research and development in brain-computer interfaces[M].Berlin,Germany:Springer,2007.
[8] Borisoff J E Mason S G,Birch G E.Brain interface research for asynchronous control applications[J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2006,14(2):160-164.
[9] Kastner S,Pinsk M A.Visual attention as a multilevel selection process[J].Cognitive,Affective,& Behavioral Neuroscience,2004,4(4):483-500.
[10] Regan D.Human brain electrophysiology:Evoked potentials and evoked magnetic fields in science and medicine[M].New York,USA:Elsevier Press,1989.
[11] Martinez P,Bakardjian H,Cichocki A.Fully-online,multicommand brain computer interface with visual neurofeedback using SSVEP paradigm[J].Computational Intelligence and Neuroscience,2007,online article ID:94561.
[12] Cheng M,Gao X R,Gao S K,et al.Design and implementation of a brain-computer interface with high transfer rates[J].IEEE Transactions on Biomedical Engineering,2002,49(10):1181-1186.
[13] Jolliffe I t Principal componem analysis,Series:Springer series in statistics[M].2nd ed.New York,USA:Springer,2002.
[14] Baldi P,Brunak S,Chauvin Y,et al.Assessing the accuracy of prediction algorithms for classification:An overview[J].Bioinformatics,2000,16(5):412-424.
[15] Hotelling H.Relations between two sets of variates[J].Biometrika,1936,28(3/4):321-377.
[16] Bin G Y,Gao X R,Yan Z,et al.An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method[J].Journal of Neural Enganecring,2009,6(4):046002.
[17] Vapnik V N.The nature of statistical learning theery[M].New York,USA:Springer-Verlag,1995.