Moving Objects Tracking and Localization with Binocular Vision Based on Sequential Detection Mechanism
QIU Xuena1,2,3, LIU Shirong2
1. Institute of Automation, East China University of Science and Technology, Shanghai 200237, China; 2. Institute of Automation, Hangzhou Dianzi University, Hangzhou 310018, China; 3. College of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315016, China
Abstract:To improve the accuracy of object tracking in a complex environment,a binocular vision moving object tracking method is presented based on sequential detection scheme.The proposed method integrates particle filter,sparse field active contour and CamShift algorithms under sequential detection mechanism.Firstly,color-feature-based particle filter is adopted to estimate optimal tracking window.Then the similarity between object and the tracking windows determines whether sparse field active contour algorithm should be performed,whereafter the similarity between the contour and the object determines whether CamShift should be employed to modify the object contour.At last,object's location is obtained based on binocular disparity information and calibration model,and the disparity confidence interval criteria is introduced to decrease the impact of the noise effectively and enhance the object localization accuracy.Experiments demonstrate that the proposed method can effectively track and locate the moving object in both camera moving and object moving,and it is able to track and locate the object accurately in both target changes in scale,orientation,view and environment illumination changes.
[1] Guilherme N D.Avinash C K.Vision for mobile robot navigation:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002.24(2):237-267.
[2] Vincze M,Schlemmer M,Gemeiner P,et al.Vision for robotics:A tool for model-based object tracking[J].Robotics & Automation Magazine,2005,12(4):53-64.
[3] 侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617.Hou Z Q,Han C Z.A survey of visual tracking[J].Acta Automatica Sinica,2006.32(4):603-617.
[4] YilmazA,Javed O,Shah M.Objecttracking:A survey[J].ACM Computing Surveys,2006,38(4):1-45.
[5] Tsalatsanis A,Valavanis K,Yalcin A.Vision based target tracking and collision avoidance for mobile robots[J].Intelligent and Robotic Systems:Theory and Applications,2007,48(2):285-304.
[6] Sanghoon K,Sangmu L,Seungjong K.Object tracking of mobile robot using moving color and shape information for the aged walking[C]//2nd International Conference on Future Generation Communication and Networking.Piscataway,NJ,USA:IEEE.2008:293-297.
[7] 祝琨,杨唐文,阮秋琦,等.基于双目视觉的运动物体实时跟踪与测距[J].机器人,2009,31(4):327-334.Zhu K,Yang T W,Ruan Q Q,et al.Real-time tracking and measuring of moving objects based on binocular vision[J].Robot,2009,31(4):327-334.
[8] Munoz-Salinas R,Aguirre E,Garcia-Silvente M,et al.A multiple object tracking approach that combines colour and depth information using a confidence measure[J].Pattern Recognition Letters,2008,29(10):1504-1514.
[9] Czyz J,Ristic B,Macq B.A particle filter for joint detection and tracking of color objects[J].Image and Vision Computing,2007,25(8):1271-1281.
[10] Kass M,Witkin A,Terzopoulos D.Snake:Active contour models[J].International Journal of Computer Vision,1988,1(4):321-331.
[11] 李培华.主动轮廓线模型(蛇模型)综述[J].软件学报,2000,11(6):751-757.Li P H.Review on active contour model(snake model)[J].Journal of Software,2000,11(6):751-757.
[12] Xu N.Ahuja N,Bansal R.Object segmentation using graph cuts based active contours[J].Computer Vision and Image Understanding,2007,107(3):210-224.
[13] Caselles V Kimmel R,Sapiro G.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61-79.
[14] Mukherjee D P,Ray N,Acton S T,Level set analysis for leukocyte detection and tracking[J].IEEE Transactions on Image Processing,2004,13(4):562-572.
[15] Adalsteinsson D,Sethian J A.A fast level set method for propagating interfaces[J].Journal of Computational Physics,1995,118(2):269-277.
[16] Whitaker R T.A level-set approach to 3D reconstruction from range data[J].International Journal of Computer Vision,1998,29(3):203-231.
[17] 翁建广,庀越挺,潘云鹤.基于改进稀疏场算法的水平集形状过渡[J].软件学报,2006,17(7):1544-1552.Weng JG,Zhuang Y T,Pan Y H.Morphing based on mended sparse-field algorithm of level-set method[J].Journal of Software,2006,17(7):1544-1552.
[18] Chan T E Vese L A.Active coutours without edges[J].IEEE Transactions on Image Processing.2001,10(2):266-277.
[19] Bradski G.Computer vision face tracking for use in a perceptual user interface[J].Intel Technology Journal,1998,2(2):12-21.
[20] Arulampalam M S,Maskell S.Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.