An Altitude Information Fusion Method for Small Unmanned Aerial Rotorcrafts
LEI Xusheng, LI Jingjing, GUO Kexin, DU Yuhu
Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, National Key Laboratory of Inertial Technology, Beihang University, Beijing 100191, China
雷旭升, 李晶晶, 郭克信, 杜玉虎. 一种小型无人旋翼机高度信息融合方法[J]. 机器人, 2012, 34(4): 432-439..
LEI Xusheng, LI Jingjing, GUO Kexin, DU Yuhu. An Altitude Information Fusion Method for Small Unmanned Aerial Rotorcrafts. ROBOT, 2012, 34(4): 432-439..
Focusing on the low precision of the altitude sensors for the small unmanned aerial rotorcraft (SUAR) due to the ground-effect and external disturbances in the process of taking off and landing, a method based on monocular vision is proposed to get altitude information. With the improved Ostu method and the affine invariant moments, the system can realize the high precision target recognition. Furthermore, to deal with the problems of the image noise, the measurement error for the barometric sensor and GPS (global positioning system), and the limited measurement range of ultrasonic sensor, an adaptive Kalman method based on residual error is proposed to fuse the data of altitude information from vision system, barometric altimeter, GPS and ultrasonic sensors. Thus, the SUAR can get altitude information of high precision in whole measuring range. Finally, the effectiveness of the proposed method is tested by the static test, hovering flight test and automatic landing test.
[1] Bayraktar S, Feron E. Experiments with small unmanned helicopter nose up landings[J]. Journal of Guidance, Control and Dynamics, 2009, 32(1): 332-337.
[2] Lara D, Romero G, Sanchez A. Robustness margin for attitude control of a four rotor mini-rotorcraft[J]. Mechatronics, 2010, 20(1): 143-152.
[3] 胡永红.数据融合方法在小型飞行器高度定位中的应用[J]. 计算机测量与控制,2006,14(10): 1371-1373. Hu Y H. Application of data fusion approach on altitude location for small aircraft[J]. Computer Measurement & Control, 2006, 14(10): 1371-1373.
[4] Li X. Comparing the Kalman filter with a Monte Carlo-based artificial neural network in the INS/GPS vector gravimetric system[ J]. Journal of Geodesy, 2009, 83(9): 797-804.
[5] 王先敏,曾庆化,熊智,等.视觉导航技术的发展及其研究 分析[J].信息与控制,2010,39(5): 607-613. Wang X M, Zeng Q H, Xiong Z, et al. Development and research analysis on vision-based navigation technologies[J]. Information and Control, 2010, 39(5): 607-613.
[6] 谢荣荣.基于光电成像的组合导航技术研究[D].西安:西 北工业大学,2006. Xie R R. The integrated navigation technology based on optoacoustic imagery[D]. Xi’an: Northwest Polytechnical University, 2006.
[7] 方挺,杨忠,沈春林.无人机编队视频序列中的多目标精确 跟踪[J].山东大学学报:工学版,2008,38(4): 22-26,74. Fang T, Yang Z, Shen C L. Multiple targets accurate tracking on UAV formation video sequences[J]. Journal of Shangdong University: Engineering Science, 2008, 38(4): 22-26,74.
[8] 江明,刘辉,黄欢.图像二值化技术的研究[J].软件导 刊,2009,8(4): 175-177. Jiang M, Liu H, Huang H. The research of binarization[J]. Software Guide, 2009, 8(4): 175-177.
[9] Mukundan R, Ragh N R V, Philip N K. A vision based attitude and position estimation algorithm for rendezvous and docking[ J]. Journal of Spacecraft Technology, 1994, 4(2): 60-67.
[10] 曹娟娟,房建成,盛蔚.低成本多传感器组合导航系统在小 型无人机自主飞行中的研究与应用[J].航空学报,2009, 30(10): 1923-1929. Cao J J, Fang J C, Sheng W. Study and application of lowcost multi-sensor integrated navigation for small UAV autonomous flight [J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1923-1929.
[11] 刘金琨.机器人控制系统的设计与MATLAB 仿真[M].北 京:清华大学出版社,2008: 505-507. Liu J K. The design of robot control system and MATLAB Simulink[M]. Beijing: Tsinghua University Press, 2008: 505- 507.
[12] Lei X S, Du Y H. A linear domain system identification for small unmanned aerial rotorcraft based on adaptive genetic algorithm[ J]. Journal of Bionic Engineering, 2010, 7(2): 142-149.