A Review of Soft Robots Enabled by Transient Driving Method
YANG Yang1,2, HE Zhiguo1,3,4, JIAO Pengcheng1,3,4, WANG Haipeng1, LI Wentao1, YE Xinghong1, LIN Guanzheng1, SONG Wei1,3, REN Hongliang2,5
1. Ocean College, Zhejiang University, Zhoushan 316021, China; 2. Department of Biomedical Engineering, National University of Singapore, Singapore 119077, Singapore; 3. Engineering Research Center of Oceanic Sensing Technology and Equipment, Ministry of Education, Zhejiang University, Zhoushan 316021, China; 4. Hainan Research Institute, Zhejiang University, Sanya 572000, China; 5. Electronic Engineering Department, The Chinese University of Hong Kong, Hong Kong 999077, China
杨旸, 贺治国, 焦鹏程, 王海鹏, 李文焘, 叶星宏, 林官正, 宋伟, 任洪亮. 瞬变速软体机器人研究综述[J]. 机器人, 2022, 44(5): 626-640.DOI: 10.13973/j.cnki.robot.210310.
YANG Yang, HE Zhiguo, JIAO Pengcheng, WANG Haipeng, LI Wentao, YE Xinghong, LIN Guanzheng, SONG Wei, REN Hongliang. A Review of Soft Robots Enabled by Transient Driving Method. ROBOT, 2022, 44(5): 626-640. DOI: 10.13973/j.cnki.robot.210310.
Abstract:Soft robots enabled by the transient driving method (TDM) are a type of high-speed devices that can generate high-speed actuation (greater than 1 time of body-length per second) by large deformations of flexible materials within a short time (less than 1 s). In this paper, the state of the art of the TDM-enabled soft robots at home and abroad is summarized, and the robots are classified according to their driving principles. The TDM-enabled soft robots are surveyed with respect to the motion modeling and simulation methods while proposing a multi-field coupled simulation method. The technical characteristics, difficulties, accuracies, and potential developmental works of the simulation studies are discussed. Current applications of the TDM-enabled soft robots are summarized, and the potential designs and applications in different scenarios are prospected.
[1] 曹玉君,尚建忠,梁科山,等.软体机器人研究现状综述[J].机械工程学报, 2012, 48(3): 25-33. Cao Y J, Shang J Z, Liang K S, et al. Review of soft-bodied robots[J]. Journal of Mechanical Engineering, 2012, 48(3): 25- 33. [2] 刘璟,张益峰,王子又.软体机器人研究发展综述[J].科技创新导报, 2017, 14(10): 118,134. Liu J, Zhang Y F, Wang Z Y. Review of soft robots[J]. Science and Technology Innovation Herald, 2017, 14(10): 118,134. [3] 王海涛,彭熙凤,林本末.软体机器人研究进展[J].华南理工大学学报, 2020, 48(2): 94-106. Wang H T, Peng X F, Lin B M. Research development of soft robots[J]. Journal of South China University of Technology, 2020, 48(2): 94-106. [4] 张进华,王韬,洪军,等.软体机械手研究综述[J].机械工程学报, 2017, 53(13): 19-28. Zhang J H, Wang T, Hong J, et al. Review of soft-bodied manipulator[J]. Journal of Mechanical Engineering, 2017, 53(13): 19-28. [5] 李峥, Jan F,任洪亮,等.面向机器人微创手术的新型遥控柔性机器人[J]. Engineering, 2015, 1(1): 73-78. Li Z, Jan F, Ren H L, et al. A novel tele-operated flexible robot targeted for minimally invasive robotic surgery[J]. Engineering, 2015, 1(1): 73-78. [6] Song S, Li Z, Yu H Y, et al. Shape reconstruction for wiredriven flexible robots based on Bźier curve and electromagnetic positioning[J]. Mechatronics, 2015, 29: 28-35. [7] Li G R, Chen X P, Zhou F H, et al. Self-powered soft robot in the Mariana Trench[J]. Nature, 2021, 591(7948): 66-71. [8] Shepherd R F, Ilievski F, Choi W, et al. Multigait soft robot[J]. PNAS, 2011, 108(51): 20400-20403. [9] Schimitt F, Piccin O, Barbe L. Soft robots manufacturing: A review[J]. Frontiers in Robotics and AI, 2018, 5. DOI: 10. 3389/frobt.2018.00084. [10] Kim S, Laschi C, Trimmer B. Soft robotics: A bioinspired evolution in robotics[J]. Trends in Biotechnology, 2013, 31(5): 287-294. [11] Gul J Z, Sajid M, Rehman M M, et al. 3D printing for soft robotics – A review[J]. Science and Technology of Advanced Materials, 2018, 19(1): 243-262. [12] Wehner M, Truby R L, Fitzgerald D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617): 451-455. [13] Lin H-T, Leisk G G, Trimmer B. GoQBot: A caterpillarinspired soft-bodied rolling robot[J]. Bioinspiration & Biomimetics, 2011, 6(2). DOI: 10.1088/1748-3182/6/2/026007. [14] Chen Z, Um T I, Bart-Smith H. A novel fabrication of ionic polymer-metal composite membrane actuator capable of 3- dimensional kinematic motions[J]. Sensors & Actuators, A: Physical, 2011, 168(1): 131-139. [15] Pelrine R, Kornbluh R, Pei Q, et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287(5454): 836-839. [16] Joyee E B, Pan Y. A fully three-dimensional printed inchworm-inspired soft robot with magnetic actuation[J]. Soft Robotics, 2019, 6(3): 333-345. [17] Li Z, Du R X. Design and analysis of a bio-inspired wiredriven multi-section flexible robot[J]. International Journal of Advanced Robotic Systems, 2013, 10(4). DOI: 10.5772/ 56025. [18] Liu C-H, Chung F-M, Chen Y, et al. Optimal design of a motordriven three-finger soft robotic gripper[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(4): 1830-1840. [19] Mikotaj R, Hao Z, Chen X, et al. Light-driven soft robot mimics caterpillar locomotion in natural scale[J]. Advanced Optical Materials, 2016, 4(11): 1689-1694. [20] Stokes A A, Shepherd R F, Morin S A, et al. A hybrid combining hard and soft robots[J]. Soft Robotics, 2013, 1(1): 70-74. [21] Polygerinos P, Correll N, Morin S, et al. Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction[J]. Advanced Engineering Materials, 2017, 19(12): 1-22. [22] Gupta U, Qin L, Wang Y, et al. Soft robots based on dielectric elastomer actuators: A review[J]. Smart Materials and Structures, 2019, 28(10): 1-16. [23] 侯涛刚,王田苗,苏浩鸿,等.软体机器人前沿技术及应用热点[J].科技导报, 2017, 35(18): 20-28. Hou T G, Wang T M, Su H H, et al. Review on soft-bodied robot[J]. Science and Technology Review, 2017, 35(18): 20- 28. [24] Yang Y, Hou B Z, Chen J Y, et al. High-speed soft actuators based on combustion-enabled transient driving method (TDM) [J]. Extreme Mechanics Letters, 2020, 37. DOI: 10.1016/j.eml. 2020.100731. [25] Bartlett N W, Tolley M T, Overvelde J T B, et al. A 3D-printed, functionally graded soft robot powered by combustion[J]. Science, 2015, 349(6244): 161-165. [26] Shepherd R F, Stokes A A, Freake J, et al. Using explosions to power a soft robot[J]. Angewandte Chemie International Edition, 2013, 52(10): 2892-2896. [27] Tolley M T, Shepherd R F, Karpelson M, et al. An untethered jumping soft robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2014: 561-566. [28] 葛锦程,汤磊,谷国迎,等.绳驱动软体操作臂的建模与控制技术研究[J].机电一体化, 2018, 24(5): 3-10,16. Ge J C, Tang L, Gu G Y, et al. Research on modeling and control of a tendon-driven soft manipulator[J]. Mechatronics, 2018, 24(5): 3-10,16. [29] Zaidi S, Maselli M, Laschi C, et al. Actuation technologies for soft robot grippers and manipulators: A review[J]. Current Robotics Reports, 2021, 2: 355-369. [30] 赵梦凡,常博,葛正浩,等.软体机器人制造工艺研究进展[J].微纳电子技术, 2018, 55(8): 606-612. Zhao M F, Chang B, Ge Z H, et al. Research progress on the manufacturing technology of the soft robot[J]. Micronanoelectronic Technology, 2018, 55(8): 606-612. [31] Wang Z K, Torigoe Y, Hirai S. A prestressed soft gripper: Design, modeling, fabrication, and tests for food handling[J]. IEEE Robotics and Automation Letters, 2017, 2(4): 1909- 1916. [32] Elangovan N, Gerez L, Gao G, et al. A multi-modal robotic gripper with a reconfigurable base: Improving dexterous manipulation without compromising grasping efficiency [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2021: 6124-6130. [33] Li M J, Su M J, Xie R Z, et al. Development of a bio-inspired soft gripper with claws[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2017: 828-833. [34] 马建旭,李明东,包志军,等.仿蚯蚓蠕动微机器人及控制系统[J].上海交通大学学报, 1999, 33(7): 93-95. Ma J X, Li M D, Bao Z J, et al. Micro peristaltic robot simulating earthworm and its control system[J]. Journal of Shanghai Jiaotong University, 1999, 33(7): 93-95. [35] Xie R Z, Su M J, Zhang Y H, et al. PISRob: A pneumatic soft robot for locomoting like an inchworm[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2018: 3448-3453. [36] Singh G, Patiballa S K, Zhang X T, et al. A pipe-climbing soft robot[C]//International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2019: 8450-8456. [37] Li T F, Li G R, Liang Y M, et al. Fast-moving soft electronic fish[J]. Science Advances, 2017, 3(4). DOI: 10.1126/sciadv. 1602045. [38] Wen L, Liang J H, Shen Q, et al. Hydrodynamic performance of an undulatory robot: Functional roles of the body and caudal fin locomotion[J]. International Journal of Advanced Robotic Systems, 2013, 10(1). DOI: 10.5772/54210. [39] Shi C Y, Luo X B, Qi P, et al. Shape sensing techniques for continuum robots in minimally invasive surgery: A survey[J]. IEEE Transactions on Biomedical Engineering, 2016, 64(8): 1665-1678. [40] Guo S X, Fukuda T, Asaka K. A new type of fish-like underwater microrobot[J]. IEEE/ASME Transactions on Mechatronics, 2003, 8(1): 136-141. [41] Pei Q, Rosenthal M, Stanford S, et al. Multiple-degrees-offreedom electroelastomer roll actuators[J]. Smart Materials and Structures, 2004, 13(5): N86-N92. [42] Choi H R, Jung K, Ryew S, et al. Biomimetic soft actuator: Design, modeling, control, and applications[J]. IEEEASME Transactions on Mechatronics, 2005, 10(5): 581-593. [43] Kofod G, Wirges W, Paajanen M, et al. Energy minimization for self-organized structure formation and actuation[J]. Applied Physics Letters, 2007, 90(8): 81-91. [44] Jung K, Koo J C, Nam J, et al. Artificial annelid robot driven by soft actuators[J]. Bioinspiration & Biomimetics, 2007, 2(2): S42-S49. [45] Yeom S, Oh I K. A biomimetic jellyfish robot based on ionic polymer metal composite actuators[J]. Smart Materials and Structures, 2009, 18(8). DOI: 10.1088/0964-1726/18/8/085002. [46] Jordi C, Michel S, Fink E. Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators[J]. Bioinspiration & Biomimetics, 2010, 5(2). DOI: 10.1088/1748- 3182/5/2/026007. [47] Firouzeh A, Ozmaeian M, Alasty A, et al. An IPMC-made deformable-ring-like robot[J]. Smart Materials and Structures, 2012, 21(6). DOI: 10.1088/0964-1726/21/6/065011. [48] Chang Y, Kim W. Aquatic ionic-polymer-metal-composite insectile robot with multi-DOF legs[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(2): 547-555. [49] Hubbard J J, Fleming M, Palmre V, et al. Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics[J]. IEEE Journal of Oceanic Engineering, 2014, 39(3): 540-551. [50] Zhao J W, Niu J Y, McCoul D, et al. A rotary joint for a flapping wing actuated by dielectric elastomers: Design and experiment[J]. Meccanica, 2015, 50(11): 2815-2824. [51] Moghadam A, Kouzani A, Torabi K, et al. Development of a novel soft parallel robot equipped with polymeric artificial muscles[J]. Smart Materials and Structures, 2015, 24(3). DOI: 10.1088/0964-1726/24/3/035017. [52] Must I, Kaasik F, Poldsalu I, et al. Ionic and capacitive artificial muscle for biomimetic soft robotics[J]. Advanced Engineering Materials, 2015, 17(1): 84-94. [53] Godaba H, Li J S, Wang Y Z, et al. A soft jellyfish robot driven by a dielectric elastomer actuator[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 624-631. [54] Carrico J D, Kim K J, Leang K K. 3D-printed ionic polymermetal composite soft crawling robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2017: 4313-4320. [55] Duduta M, Clarke D R, Wood R J. A high speed soft robot based on dielectric elastomer actuators[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2017: 4346-4351. [56] Villanueva A, Smith C, Priya S. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators[J]. Bioinspiration & Biomimetics, 2011, 6(3). DOI: 10. 1088/1748-3182/6/3/036004. [57] Laschi C, Cianchetti M, Mazzolai B, et al. Soft robot arm inspired by the octopus[J]. Advanced Robotics, 2012, 26(7): 709-727. [58] Kim H-J, Song S-H, Ahn S-H. A turtle-like swimming robot using a smart soft composite (SSC) structure[J]. Smart Materials and Structures, 2013, 22(1). DOI: 10.1088/0964-1726/ 22/1/014007. [59] Umedachi T, Vikas V, Trimmer B A. Highly deformable 3- D printed soft robot generating inching and crawling locomotions with variable friction legs[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2013: 4590-4595. [60] Song S-H, Kim M-S, Rodrigue H, et al. Turtle mimetic soft robot with two swimming gaits[J]. Bioinspiration & Biomimetics, 2016, 11(3). DOI: 10.1088/1748-3190/11/3/ 036010. [61] Jin H, Dong E B, Alici G, et al. A starfish robot based on soft and smart modular structure (SMS) actuated by SMA wires[J]. Bioinspiration & Biomimetics, 2016, 11(5). DOI: 10.1088/ 1748-3190/11/5/056012. [62] Alcaide J O, Pearson L, Rentschler M. Design, modeling and control of a SMA-actuated biomimetic robot with novel functional skin[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2017: 4338-4345. [63] Huang X N, Kumar K, Jawed M K, et al. Chasing biomimetic locomotion speeds: Creating untethered soft robots with shape memory alloy actuators[J]. Science Robotics, 2018, 3(25). DOI: 10.1126/scirobotics.aau7557. [64] Shiva A, Stilli A, Noh Y, et al. Tendon-based stiffening for a pneumatically actuated soft manipulator[J]. IEEE Robotics and Automation Letters, 2016, 1(2): 632-637. [65] Suzumori K, Endo S, Kanda T, et al. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot [C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2007: 4975-4980. [66] Faudzi A A M, Razif M R M, Nordin I N A M, et al. Development of bending soft actuator with different braided angles[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, USA: IEEE, 2012: 1093-1098. [67] Tolley M T, Shepherd R F, Mosadegh B, et al. A resilient, untethered soft robot[J]. Soft Robotics, 2014, 1(3): 213-223. [68] Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic networks for soft robotics that actuate rapidly[J]. Advanced Functional Materials, 2014, 24(15): 2163-2170. [69] Deimel R, Brock O. A novel type of compliant and underactuated robotic hand for dexterous grasping[J]. International Journal of Robotics Research, 2016, 35(1-3): 161-185. [70] Polygerinos P, Wang Z, Galloway K C, et al. Soft robotic glove for combined assistance and at-home rehabilitation[J]. Robotics and Autonomous Systems, 2015, 73: 135-143. [71] Miao Y, Dong W, Du Z J. Design of a soft robot with multiple motion patterns using soft pneumatic actuators[J]. IOP Conference Series: Materials Science and Engineering, 2017, 269(1). DOI: 10.1088/1757-899x/269/1/012013. [72] Uppalapati N K, Krishnan G. Towards pneumatic spiral grippers: Modeling and design considerations[J]. Soft Robotics, 2018, 5(6): 695-709. [73] Pedro P, Ananda C, Rafael P B, et al. Closed structure soft robotic gripper[C]//IEEE International Conference on Soft Robotics. Piscataway, USA: IEEE, 2018: 66-70. [74] Yirmibesoglu O D, Morrow J, Walker S, et al. Direct 3D printing of silicone elastomer soft robots and their performance comparison with molded counterparts[C]//IEEE International Conference on Soft Robotics. Piscataway, USA: IEEE, 2018: 295-302. [75] Hyatt P, Kraus D, Sherrod V, et al. Configuration estimation for accurate position control of large-scale soft robots[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(1): 88- 99. [76] Li S G, Stampfli J J, Xu H J, et al. A vacuum-driven origami “magic-ball” soft gripper[C]//International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2019: 7401-7408. [77] Loepfe M, Schumacher C M, Lustenberger U B, et al. An untethered, jumping roly-poly soft robot driven by combustion[J]. Soft Robotics, 2015, 2(1): 33-41. [78] Li H, Go G, Ko S Y, et al. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery[J]. Smart Materials and Structures, 2016, 25(2). DOI: 10.1088/ 0964-1726/25/2/027001. [79] Keithly D, Whitehead J, Voinea A, et al. A cephalopodinspired combustion powered hydro-jet engine using soft actuators[J]. Extreme Mechanics Letters, 2018, 20(1): 1-8. [80] Kim E, Takeuchi M, Ohira R, et al. Design of soft sensor for feedback control of bio-actuator powered by skeletal muscle[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2021: 643-648. [81] Zhao J W, Zhang J M, McCoul D, et al. A soft biomimetic module of elephant trunk driven by dielectric elastomers[C]// IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2018: 349-354. [82] Higashi K, Miki N. A self-swimming microbial robot using microfabricated nanofibrous hydrogel[J]. Sensors and Actuators, B: Chemical, 2014, 202: 301-306. [83] Najem J, Leo D J. A bio-inspired bell kinematics design of a jellyfish robot using ionic polymer metal composites actuators[C]//Proceedings of the SPIE, Vol.8340. Bellingham, USA: SPIE, 2012. DOI: 10.1117/12.915170. [84] Baniasadi M, Yarali E, Bodaghi M, et al. Constitutive modeling of multi-stimuli-responsive shape memory polymers with multi-functional capabilities[J]. International Journal of Mechanical Sciences, 2021, 192. DOI: 10.1016/j.ijmecsci.2020. 106082. [85] Gossweiler G R, Brown C L, Hewage G B, et al. Mechanochemically active soft robots[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22431-22435. [86] Mao S X, Dong E B, Jin H, et al. Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAs[J]. Journal of Bionic Engineering, 2014, 11(3): 400- 411. [87] Marchese A D, Onal C D, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators[J]. Soft Robotics, 2014, 1(1): 75-87. [88] Stergiopulos C, Vogt D, Tolley M T, et al. A soft combustiondriven pump for soft robots[C]//ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York, USA: ASME, 2014. DOI: 10.1115/SMASIS2014- 7536. [89] Chen Y F, Wang H Q, Helbling E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot[J]. Science Robotics, 2017, 2(11). DOI: 10.1126/scirobotics. aao5619. [90] Zufferey R, Ancel A O, Farinha A, et al. Consecutive aquatic jump-gliding with water-reactive fuel[J]. Science Robotics, 2019, 4(34). DOI: 10.1126/scirobotics.aax7330. [91] 徐丰羽,郭义全,周映江,等.软体机器人的驱动器及制作方法研究综述[J].南京邮电大学学报(自然科学版), 2018, 38(4): 69-80. Xu F Y, Guo Y Q, Zhou Y J, et al. Review of actuator and manufacturing methods in soft robots[J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2018, 38(4): 69-80. [92] Yang H, Li C H, Yang M, et al. Printing hydrogels and elastomers in arbitrary sequence with strong adhesion[J]. Advanced Functional Materials, 2019, 29(27). DOI: 10.1002/ adfm.201901721. [93] Elango N, Faudzi A A M. A review article: Investigations on soft materials for soft robot manipulations[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5): 1027-1037. [94] Mehraban A, Brown J, Barra V, et al. Efficient residual and matrix-free Jacobian evaluation for three-dimensional tri-quadratic hexahedral finite elements with nearly-incompressible Neo-Hookean hyperelasticity applied to soft materials on unstructured meshes in parallel, with PETSc and libCEED[C]// ASME International Mechanical Engineering Congress and Exposition. New York, USA: ASME, 2020. DOI: 10.1115/ IMECE2020-24522. [95] Razus D, Brinzea V, Mitu M, et al. Temperature and pressure influence on explosion pressures of closed vessel propane-air deflagrations[J]. Journal of Hazardous Materials, 2010, 174(1- 3): 548-555. [96] Wang Y P, Yang X B, Chen Y F, et al. A biorobotic adhesive disc for underwater hitchhiking inspired by the remora suckerfish[J]. Science Robotics, 2017, 2(10). DOI: 10.1126/ scirobotics.aan8072. [97] Stokes A A, Shepherd R F, Morin S A, et al. A hybrid combining hard and soft robots[J]. Soft Robotics, 2013, 1(1): 70-74. [98] Hou T G, Yang X B, Su H H, et al. Design and experiments of a squid-like aquatic-aerial vehicle with soft morphing fins and arms[C]//International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2019: 4681-4687. [99] Weisbin C R, Schenker P S, Easter R, et al. Space AI and robotics – Robotic colonies[M]//Encyclopedia of Physical Science and Technology. Salt Lake City, USA: Academic Press, 2003: 397-401. [100] Ju A. Soft robot to swim through Europa’s oceans[EB/OL]. (2015-05-12) [2021-07-01]. https://news.cornell.edu/stories/2015/05/soft-robot-swim-through-europas-oceans.