Abstract:For patients with lower-limb movement disorders caused by spinal cord injury, brain injury, and other factors, the lower-limb exoskeleton rehabilitation robot can be applied to performing precise rehabilitation in the early stage of the patient injury, and optimizing the rehabilitation strategy during the rehabilitation process. This paper compares the advantages of lower-limb exoskeleton rehabilitation robots over the traditional rehabilitation methods, and expounds the equipment characteristics and application scenarios of different exoskeleton robots based on the research status at home and abroad. The key technologies for exoskeleton rehabilitation robots are analyzed in detail, including driving methods, control systems, and training modes. Finally, the challenges to lower-limb exoskeleton rehabilitation robots in future development are emphatically discussed, and feasible discussions are put forward from five aspects, such as mechanical structure optimization, driving algorithm optimization, intelligent rehabilitation process, application scenario optimization based on virtual reality technology, and evaluation of rehabilitation effect. The future technology trends of the lower-limb exoskeleton rehabilitation robot are analyzed feasibly.
[1] 王战斌,陈思婧,杨青,等.下肢外骨骼机器人临床康复 应用进展[J].中国康复医学杂志, 2021, 36(6): 761-765. Wang Z B, Chen S J, Yang Q, et al. Progress in clinical rehabilitation of lower extremity exoskeleton robot[J]. Chinese Journal of Rehabilitation Medicine, 2021, 36(6): 761-765. [2] 王予彬,王惠芳.运动损伤康复治疗学[M]. 2版.北京: 科学出版社, 2019: 39-48. Wang Y B, Wang H F. Athletic injury rehabilitation therapy[M]. 2nd ed. Beijing: Science Press, 2019: 39-48. [3] Bogue R. Exoskeletons and robotic prosthetics: A review of recent developments[J]. Industrial Robot, 2009, 36(5): 421-427. [4] Hartigan C, Kandilakis C, Dalley S, et al. Mobility outcomes following five training sessions with a powered exoskeleton[J]. Topics in Spinal Cord Injury Rehabilitation, 2015, 21(2): 93-99. [5] Zhang D G, Ren Y, Gui K, et al. Cooperative control for a hybrid rehabilitation system combining functional electrical stimulation and robotic exoskeleton[J]. Frontiers in Neuroscience, 2017, 11. DOI: 10.3389/fnins.2017.00725. [6] Yagn N. Apparatus to facilitate walking and running[EB/OL]. [2022-03-28]. https://www.mendeley.com/research-papers/app aratus-facilitate-walking-running. [7] 李龙飞,朱凌云,苟向锋.可穿戴下肢外骨骼康复机器人 研究现状与发展趋势[J].医疗卫生装备, 2019, 40(12): 9. Li L F, Zhu L Y, Gou X F. Current status and development trend of wearable lower-limb exoskeleton rehabilitation robot[J]. Chinese Medical Equipment Journal, 2019, 40(12): 9. [8] Formalskii A, Shneider A. Book reviews: Biped locomotion (dynamics, stability, control and application)[J]. International Journal of Robotics Research, 1992, 11(4): 396. [9] Garcia E, Sater J M, Main J. Exoskeletons for human performance augmentation (EHPA): A program summary[J]. Journal of the Robotics Society of Japan, 2002, 20(8): 822-826. [10] Hidler J, Wisman W, Neckel N. Kinematic trajectories while walking within the Lokomat robotic gait-orthosis[J]. Clinical Biomechanics, 2008, 23(10): 1251-1259. [11] 徐飞,佀国宁,程云章,等.下肢康复机器人结构设计的 研究进展[J].北京生物医学工程, 2018, 37(1): 96-102. Xu F, Si G N, Cheng Y Z, et al. Research advances in structural design of lower limb rehabilitation robot[J]. Beijing Biomedical Engineering, 2018, 37(1): 96-102. [12] Nilsson A, Vreede K S, Häglund V, et al. Gait training early after stroke with a new exoskeleton – The hybrid assistive limb: A study of safety and feasibility[J]. Journal of NeuroEngineering and Rehabilitation, 2014, 11. DOI: 10.1186/1743-0003-11-92. [13] Lee S, Sankai Y. Power assist control for walking aid with HAL- 3 based on EMG and impedance adjustment around knee joint [C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2002: 1499-1504. [14] Cho D Y, Park S-W, Lee M J, et al. Effects of robot-assisted gait training on the balance and gait of chronic stroke patients: Focus on dependent ambulators[J]. Journal of Physical Therapy Science, 2015, 27(10): 3053-3057. [15] Zeilig G, Weingarden H, Zwecker M, et al. Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study[J]. The Journal of Spinal Cord Medicine, 2012, 35(2): 96-101. [16] Farris R J, Quintero H A, Goldfarb M. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(6): 652-659. [17] Milia P, de Salvo F, Caserio M, et al. Neurorehabilitation in paraplegic patients with an active powered exoskeleton (Ekso) [J]. Digital Medicine, 2016, 2(4): 163-168. [18] Technaid. Technaid at Global Robot Expo 2019[EB/OL]. (2018- 05-11) [2022-03-28]. https://www.technaid.com/technaid-atglobal-robot-expo-2019. [19] de la Soledad Rodriguez-Ugarte M, Iáñez E, Ortiz-Garcia M, et al. Effects of tDCS on real-time BCI detection of pedaling motor imagery[J]. Sensors, 2018, 18(4). DOI: 10.3390/s18041136. [20] 方郁.可穿戴下肢助力机器人动力学建模及其控制研究 [D].合肥:中国科学技术大学, 2009. Fang Y. Research on dynamic analysis and control of the wearable power assist robot[D]. Hefei: University of Science and Technology of China, 2009. [21] 帅梅.双足型下肢外骨骼康复训练机器人: CN30482249 85[P]. 2018-09-18. Shuai M. A biped lower-limb exoskeleton rehabilitation robot: CN3048224985[P]. 2018-09-18. [22] 北京大艾机器人科技有限公司. AiLegs艾动产品介绍[EB/ OL]. [2022-03-28]. https://www.ai-robotics.cn/products/ailegs. Beijing AI-robotics Technology Co., Ltd. Introduction to AiLegs products[EB/OL]. [2022-03-28]. https://www.ai-robotics.cn/products/ailegs. [23] 缪云洁.新型下肢外骨骼的机构性能设计方法研究[D].上 海:上海交通大学, 2015. Miao Y J. Research on the mechanical performance design of an innovative lower extremity exoskeleton[D]. Shanghai: Shanghai Jiao Tong University, 2015. [24] 张超.下肢助力外骨骼机器人研究[D].哈尔滨:哈尔滨工 业大学, 2016. Zhang C. Research on lower limbs powered exoskeleton robot [D]. Harbin: Harbin Institute of Technology, 2016. [25] 靳兴来.液压驱动下肢外骨骼机器人摆动相控制系统研究 [D].杭州:浙江大学, 2017. Jin X L. Control system research of hydraulic driven lower limb exoskeleton in swing phase[D]. Hangzhou: Zhejiang University, 2017. [26] 赵新刚,谈晓伟,张弼.柔性下肢外骨骼机器人研究进展 及关键技术分析[J].机器人, 2020, 42(3): 365-384. Zhao X G, Tan X W, Zhang B. Development of soft lower extremity exoskeleton and its key technologies: A survey[J]. Robot, 2020, 42(3): 365-384. [27] 刘王智懿,郑银环,孙健铨,等.轻量型柔性下肢助力 外骨骼的设计及性能实验[J].机器人, 2021, 43(4): 433- 442. Liuwang Z Y, Zheng Y H, Sun J Q, et al. Design and performance experiment of a lightweight flexible lower-limb exoskeleton[J]. Robot, 2021, 43(4): 433-442. [28] 布法罗机器人科技(成都)有限公司.布法罗康复机器 人产品介绍[EB/OL].[2019-07-21]. http://www.buffalo-robot.com/show-25-35-1.html. [29] 上海傅利叶智能科技有限公司. Fourier X2产品介绍[EB/ OL]. [2019-07-21]. http://www.fftai.com/product/X2.php. [30] 李静,朱凌云,苟向锋.下肢外骨骼康复机器人及其关键 技术研究[J].医疗卫生装备, 2018, 39(8): 95-100. Li J, Zhu L Y, Gou X F. Survey on exoskeleton lower limbs rehabilitation robot and key technologies[J]. Chinese Medical Equipment Journal, 2018, 39(8): 95-100. [31] Chen S J, Wang Z B, Li Y Q, et al. Safety and feasibility of a novel exoskeleton for locomotor rehabilitation of subjects with spinal cord injury: A prospective, multi-center, and cross-over clinical trial[J]. Frontiers in Neurorobotics, 2022, 16. DOI: 10. 3389/fnbot.2022.848443. [32] Ekso Bionics, Inc.. Ekso (version 1.1) and Ekso GT (version 1.2)[S]. Silver Spring, USA: U.S. Food and Drug Administration, 2016. [33] Watanabe H, Tanaka N, Inuta T, et al. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: A randomized controlled pilot study[J]. Archives of Physical Medicine and Rehabilitation, 2014, 95(11): 2006-2012. [34] Li Y Q, Fan T, Qi Q, et al. Efficacy of a novel exoskeletal robot for locomotor rehabilitation in stroke patients: A multi-center, non-inferiority, randomized controlled trial[J]. Frontiers in Aging Neuroscience, 2021, 13. DOI: 10.3389/fnagi.2021.706569. [35] Piira A, Lannem A M, Sørensen M, et al. Robot-assisted locomotor training did not improve walking function in patients with chronic incomplete spinal cord injury: A randomized clinical trial[J]. Journal of Rehabilitation Medicine, 2019, 51(5): 385-389. [36] Calabrò R S, Naro A, Russo M, et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: A randomized clinical trial[J]. Journal of NeuroEngineering and Re- habilitation, 2018, 15(1). DOI: 10.1186/s12984-018-0377-8. [37] Miller L E, Zimmermann A K, Herbert W G. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: Systematic review with metaanalysis[J]. Medical Devices, 2016, 9: 455-466. [38] Jansen O, Grasmuecke D, Meindl R C, et al. Hybrid assistive limb exoskeleton HAL in the rehabilitation of chronic spinal cord injury: Proof of concept: The results in 21 patients[J]. World Neurosurgery, 2018, 110: 73-78. [39] 邢凯,赵新华,陈炜,等.外骨骼机器人的研究现状及发 展趋势[J].医疗卫生装备, 2015, 36(1): 104-107. Xing K, Zhao X H, Chen W, et al. Research situation and development trend of robot exoskeleton[J]. Chinese Medical Equipment Journal, 2015, 36(1): 104-107. [40] Chillura A, Bramanti A, Tartamella F, et al. Advances in the rehabilitation of intensive care unit acquired weakness: A case report on the promising use of robotics and virtual reality coupled to physiotherapy[J]. Medicine, 2020, 99(28). DOI: 10.1097/md.0000000000020939. [41] Zhao H Y, Wang Z L, Qiu S, et al. IMU-based gait analysis for rehabilitation assessment of patients with gait disorders[C]//4th International Conference on Systems and Informatics. Piscataway, USA: IEEE, 2017: 622-626. [42] Zeng W, Yuan C Z, Wang Q H, et al. Classification of gait patterns between patients with Parkinson’s disease and healthy controls using phase space reconstruction (PSR), empirical mode decomposition (EMD) and neural networks[J]. Neural Networks, 2019, 111: 64-76. [43] Hadizadeh M, Amri S, Mohafez H, et al. Gait analysis of national athletes after anterior cruciate ligament reconstruction following three stages of rehabilitation program: Symmetrical perspective[J]. Gait & Posture, 2016, 48: 152-158. [44] Wahab Y, Bakar N A. Gait analysis measurement for sport application based on ultrasonic system[C]//IEEE 15th International Symposium on Consumer Electronics. Piscataway, USA: IEEE, 2011: 20-24. [45] Prakash C, Kumar R, Mittal N. Recent developments in human gait research: Parameters, approaches, applications, machine learning techniques, datasets and challenges[J]. Artificial Intelligence Review, 2016, 49(1): 1-40. [46] Alharthi A S, Yunas S U, Ozanyan K B. Deep learning for monitoring of human gait: A review[J]. IEEE Sensors Journal, 2019, 19(21): 9575-9591. [47] Behboodi A, Zahradka N, Wright H, et al. Real-time detection of seven phases of gait in children with cerebral palsy using two gyroscopes[J]. Sensors, 2019, 19(11). DOI: 10.3390/ s19112517. [48] Hassani W, Mohammed S, Rifaï H, et al. EMG based approach for wearer-centered control of a knee joint actuated orthosis[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2013: 990-995. [49] Jiang X Z, Xiong C H, Sun R L, et al. Fuzzy hybrid forceposition control for the robotic arm of an upper limb rehabilitation robot powered by pneumatic muscles[C]//International Conference on E-Product E-Service and E-Entertainment. Piscataway, USA: IEEE, 2010. DOI: 10.1109/ICEEE.2010.5661226. [50] Hogan N. Impedance control: An approach to manipulation: Part I – Theory[J]. Journal of Dynamic Systems, Measurement, and Control, 1985, 107(1): 1-7. [51] Tsoi Y H, Xie S Q. Impedance control of ankle rehabilitation robot[C]//2008 IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2009: 840-845. [52] 胡进,侯增广,陈翼雄,等.下肢康复机器人及其交互控 制方法[J].自动化学报, 2014, 40(11): 2377-2390. Hu J, Hou Z G, Chen Y X, et al. Lower limb rehabilitation robots and interactive control methods[J]. Acta Automatica Sinica, 2014, 40(11): 2377-2390. [53] 石男强,刘刚峰,郑天骄,等.下肢康复机器人的研究进 展与临床应用[J].信息与控制, 2021, 50(1): 43-53. Shi N Q, Liu G F, Zheng T J, et al. Research progress and clinical application of lower limb rehabilitation robot[J]. Information and Control, 2021, 50(1): 43-53. [54] Luo Y H, Wang C, Wang Z, et al. Comparision of different control algorithms for a knee exoskeleton[C]//15th International Conference on Control, Automation, Robotics and Vision. Piscataway, USA: IEEE, 2018: 585-590. [55] Sherwani K I K, Kumar N, Chemori A, et al. RISE-based adaptive control for EICoSI exoskeleton to assist knee joint mobility[J]. Robotics and Autonomous Systems, 2020, 124. DOI: 10. 1016/j.robot.2019.103354. [56] 谢峥,王明江,黄武龙,等.一种行走辅助型下肢外骨 骼的设计与实现[J].北京大学学报(自然科学版), 2017, 53(6): 989-996. Xie Z, Wang M J, Huang W L, et al. Design and implementation of a lower extremity exoskeleton for walking assist[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(6): 989-996. [57] Kim K, Kim J J, Kang S R, et al. Analysis of the assistance characteristics for the plantarflexion torque in elderly adults wearing the powered ankle exoskeleton[C]//International Conference on Control, Automation and Systems. Piscataway, USA: IEEE, 2010: 576-579. [58] McCain E M, Dick T J M, Giest T N, et al. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control[J]. Journal of NeuroEngineering and Rehabilitation, 2019, 16(1). DOI: 10.1186/s12984-019-0523-y. [59] Hirano S, Saitoh E, Tanabe S, et al. Comparison between gaitassisting robot (WPAL) and bilateral knee-ankle-foot orthoses with a medial single hip joint in gait reconstruction for patients with paraplegia[J]. Japanese Journal of Comprehensive Rehabilitation Science, 2015, 6: 21-26. [60] Pillai M, Yang Y, Ditmars C, et al. Artificial intelligence-based interactive virtual reality-assisted gaming system for hand rehabilitation[C]//Proceedings of the SPIE, Vol.11318. Bellingham, USA: SPIE, 2020. DOI: 10.1117/12.2549372.