Robots in Torch Relay at the Beijing 2022 Olympic and Paralympic Winter Games
TIAN Qiyan1,2, LI Shuo1,2, YANG Liying1,2, SHAO Shiliang1,2, ZHANG Bi1,2, GAO Yue3, SHUAI Mei4
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; 3. MoE Key Lab of Artificial Intelligence and AI Institute, Shanghai Jiao Tong University, Shanghai 200240, China; 4. Beijing AI- Robotics Technology Co., Ltd, Beijing 100176, China
Abstract:To meet the requirements of the multi-robot cross-domain torch relay at the Beijing Olympic Winter Games, 6 types of robots are developed for torch relay, including amphibious robot (AR), underwater variable structure robot (VSR), unmanned aerial vehicle (UAV), unmanned ground vehicle (UGV), six-legged robot (SR) and exoskeleton robots (ER). Based on these robots, the torch relay on the ground, in the air and underwater can be realized respectively. According to the adjustment of torch relay route plan at the Beijing 2022 Olympic and Paralympic Winter Games, AR, VSR and specific underwater torch are successfully applied to the underwater torch relay at the Beijing 2022 Olympic Winter Games, realizing the first underwater torch relay between robots in the history of the Olympic Games. ERs are used in torch relay at the Beijing 2022 Paralympic Winter Games. The representative of the disabled used ER at the allspark gathering ceremony, and two disabled torchbearers completed the torch relay using the upper and lower limb ERs respectively. This activity conveys the concept of “technology changes life” and reflects the spirit of “technology warms people's hearts”.
[1] 蒋效愚.从“双奥之城”看中国对奥运的五大贡献[N/OL]. 北京日报, 2022-04-29[2022-05-01]. https://www.beijing2022.cn/wog.htm?cmsid=EYS2022042900385100. [2] 北京市科委.科技冬奥有关情况专场发布会解码科技冬奥[EB/OL]. (2022-02-21) [2022-05-01]. http://www.most.gov.cn/dfkj/bj/zxdt/202202/t20220221_179450.html. [3] 孙长银,吴国政,王志衡,等.自动化学科面临的挑战[J]. 自动化学报, 2021, 47(2): 464-474. Sun C Y, Wu G Z, Wang Z H, et al. On challenges in automation science and technology[J]. Acta Automatica Sinica, 2021, 47(2): 464-474. [4] Gao F, Li S, Gao Y, et ah. Robots at the Beijing 2022 Winter Olympics[J]. Science Robotics, 2022, 7(65). DOI: 10.1126/scirobotics.abq0785. [5] 陆洋,唐元贵,王健,等.全海深ARV浮力配平计算方法[J].机器人, 2021, 43(1): 74-80. Lu Y, Tang Y G, Wang J, et al. A calculation method of ARV buoyancy trim at full-ocean depth[J]. Robot, 2021, 43(1): 74- 80. [6] 代波,何玉庆,谷丰,等.基于加速度反馈增强的旋翼无人机抗风扰控制[J].机器人, 2020, 42(1): 79-88. Dai B, He Y Q, Gu F, et al. Acceleration feedback enhanced controller for wind disturbance rejection of rotor unmanned aerial vehicle[J]. Robot, 2020, 42(1): 79-88. [7] Zhang G Y, He Y Q, Dai B, et al. Robust control of an aerial manipulator based on a variable inertia parameters model[J]. IEEE Transactions on Industrial Electronics, 2020, 67(11): 9515- 9525. [8] Su Y, Wang T, Shao S L, et al. GR-LOAM: LiDAR-based sensor fusion SLAM for ground robots on complex terrain[J]. Robotics and Autonomous Systems, 2021, 140(5): 103-759. [9] 李洋,徐达.基于引力自适应步长RRT的双臂机器人协同路径规划[J].机器人, 2020, 42(5): 606-616. Li Y, Xu D. Cooperative path planning of dual-arm robot based on attractive force self-adaptive step size RRT[J]. Robot, 2020, 42(5): 606-616. [10] Zhao Y, Gao Y, Sun Q. A real-time low-computation cost human-following framework in outdoor environment for legged robots[J]. Robotics and Autonomous Systems. 2021, 146. DOI: 10.1016/j.robot.2021.103899. [11] 李自由,赵新刚,张弼,等.基于表面肌电的意图识别方法在非理想条件下的研究进展[J].自动化学报, 2021, 47(5): 955-969. Li Z Y, Zhao X G, Zhang B, et al. Review of sEMG-based motion intent recognition methods in non-ideal conditions[J]. Acta Automatica Sinica, 2021, 47(5): 955-969. [12] 王战斌,陈思婧,杨青,等.下肢外骨骼机器人临床康复应用进展[J].中国康复医学杂志, 2021, 36(6): 761-765. Wang Z B, Chen S J, Yang Q, et al. Recent advances in clinical rehabilitation of lower-limb exoskeleton robot[J]. Chinese Journal of Rehabilitation Medicine, 2021, 36(6): 761-765.