1. College of Artificial Intelligence, Nankai University, Tianjin 300350, China; 2. Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300350, China; 3. Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin 300350, China; 4. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 5. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; 6. Department of Neurology, Tianjin Huanhu Hospital, Tianjin 300350, China
Abstract:State of the art of Parkinson's disease (PD) rehabilitation robots is summarized and the development directions of related technologies are discussed. First of all, pathological characteristics, motor symptoms, rehabilitation mechanisms and therapeutic principles are presented for Parkinson's disease in comparison with stroke. Then, a comprehensive survey on the state of the art of PD rehabilitation robots and technologies is given from aspects of upper-limb rehabilitation, lower-limb rehabilitation, tremor suppression, and severity assessment techniques, respectively. Further, the limitations of current researches are analyzed, and the future directions of robot-assisted PD rehabilitation technologies are discussed. Specifically, based on the pathological characteristics and rehabilitation principles of Parkinson's disease, it is necessary to develop PD-specific brain-muscle-limb fused rehabilitation technologies.
[1] Poewe W, Seppi K, Tanner C M, et al. Parkinson disease[J]. Nature Reviews Disease Primers, 2017, 3. DOI: 10.1038/nrdp. 2017.13. [2] Dorsey E R, Constantinescu R, Thompson J P, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030[J]. Neurology, 2007, 68(5). DOI: 10.1212/01.wnl.0000247740.47667.03. [3] 中华医学会,中华医学会杂志社,中华医学会全科医学分会,中华医学会《中华全科医师杂志》编辑委员会,神经系统疾病基层诊疗指南编写专家组. 帕金森病基层诊疗指南( 2019年) [J].中华全科医师杂志, 2020, 19(1): 5-17. Chinese Medical Association, Chinese Medical Journals Publishing House, Chinese Society of General Practice, Editorial Board of Chinese Journal of General Practitioners of Chinese Medical Association, Expert Group of Guidelines for Primary Care of Nervous System Disease. Guideline for primary care of Parkinson’s disease (2019)[J]. Chinese Journal of General Practitioners, 2020, 19(1): 5-17. [4] Kalia L V, Lang A E. Parkinson’s disease[J]. The Lancet, 2015, 386(9996): 896-912. [5] Suttrup I, Warnecke T. Dysphagia in Parkinson’s disease[J]. Dysphagia, 2016, 31: 24-32. [6] Potulska A, Friedman A, Królicki L, et al. Swallowing disorders in Parkinson’s disease[J]. Parkinsonism & Related Disorders, 2003, 9(6): 349-353. [7] Inzelberg R, Peleg N, Nisipeanu P, et al. Inspiratory muscle training and the perception of dyspnea in Parkinson’s disease [J]. Canadian Journal of Neurological Sciences, 2005, 32(2): 213-217. [8] Baille G, Chenivesse C, Perez T, et al. Dyspnea: An underestimated symptom in Parkinson’s disease[J]. Parkinsonism & Related Disorders, 2019, 60: 162-166. [9] Fall P A, Saleh A, Fredrickson M, et al. Survival time, mortality, and cause of death in elderly patients with Parkinson’s disease. A 9-year follow-up[J]. Movement Disorders, 2003, 18(11): 1312-1316. [10] Jones A, Skinner M A. The current status of physical therapy in China[J]. Chinese Journal of Rehabilitation Medicine, 2013, 28(6): 493-501. [11] Yu N B, Riener R. A robotic approach to investigate rehabilitation induced recovery of sensorimotor function[C]//32nd Chinese Control Conference. Piscataway, USA: IEEE, 2013: 6004-6009. [12] Liang X, Wang W Q, Hou Z G, et al. Interactive control methods for rehabilitation robot[J]. Scientia Sinica: Informationis, 2018, 48(1): 24-46. [13] 胡进,侯增广,陈翼雄,等. 下肢康复机器人及其交互控制方法[J].自动化学报, 2014, 40(11): 2377-2390. Hu J, Hou Z G, Chen Y X, et al. Lower limb rehabilitation robots and interactive control methods[J]. Acta Automatica Sinica, 2014, 40(11): 2377-2390. [14] 郭晓辉,王晶,徐光华. 手部功能康复机器人研究最新进展[J].中国康复医学杂志, 2017, 32(2): 235-240. Guo X H, Wang J, Xu G H. Recent advances in functional hand rehabilitation robot research[J]. Chinese Journal of Rehabilitation Medicine, 2017, 32(2): 235-240. [15] Deng W H, Papavasileiou I, Qiao Z, et al. Advances in automation technologies for lower extremity neurorehabilitation: A review and future challenges[J]. IEEE Reviews in Biomedical Engineering, 2018, 11: 289-305. [16] Demofonti A, Carpino G, Zollo L, et al. Affordable robotics for upper limb stroke rehabilitation in developing countries: A systematic review[J]. IEEE Transactions on Medical Robotics and Bionics, 2021, 3(1): 11-20. [17] Nelson A B, Kreitzer A C. Reassessing models of basal ganglia function and dysfunction[J]. Annual Review of Neuroscience, 2014, 37: 117-135. [18] Berardelli A, Rothwell J C, Thompson P D, et al. Pathophysiology of bradykinesia in Parkinson’s disease[J]. Brain, 2001, 124(11): 2131-2146. [19] Bologna M, Paparella G, Fasano A, et al. Evolving concepts on bradykinesia[J]. Brain, 2020, 143(3): 727-750. [20] Berardelli A, Dick J P, Rothwell J C, et al. Scaling of the size of the first agonist EMG burst during rapid wrist movements in patients with Parkinson’s disease[J]. Journal of Neurology, Neurosurgery & Psychiatry, 1986, 49(11): 1273-1279. [21] Magrinelli F, Picelli A, Tocco P, et al. Pathophysiology of motor dysfunction in Parkinson’s disease as the rationale for drug treatment and rehabilitation[J]. Parkinson’s Disease, 2016. DOI: 10.1155/2016/9832839. [22] Conte A, Khan N, Defazio G, et al. Pathophysiology of somatosensory abnormalities in Parkinson disease[J]. Nature Reviews Neurology, 2013, 9: 687-697. [23] Konczak J, Corcos D M, Horak F, et al. Proprioception and motor control in Parkinson’s disease[J]. Journal of Motor Behavior, 2009, 41(6): 543-552. [24] Tinaz S, Pillai A S, Hallett M. Sequence effect in Parkinson’s disease is related to motor energetic cost[J]. Frontiers in Neurology, 2016, 7. DOI: 10.3389/fneur.2016.00083. [25] Wu T, Zhang J R, Hallett M, et al. Neural correlates underlying micrographia in Parkinson’s disease[J]. Brain, 2016, 139(1): 144-160. [26] Blin O, Ferrandez A M, Serratrice G. Quantitative analysis of gait in Parkinson patients: Increased variability of stride length [J]. Journal of the Neurological Sciences, 1990, 98(1): 91-97. [27] Delval A, Defebvre L, Tard C. Freezing during tapping tasks in patients with advanced Parkinson’s disease and freezing of gait [J]. PLoS One, 2017, 12(9). DOI: 10.1371/journal.pone.0181973. [28] Spildooren J, Vercruysse S, Desloovere K, et al. Freezing of gait in Parkinson’s disease: The impact of dual-tasking and turning[J]. Movement Disorders, 2010, 25(15): 2563-2570. [29] Postuma R B, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease[J]. Movement Disorders, 2015, 30(12): 1591-1601. [30] 郝蔓钊. 帕金森病静息震颤的脊髓神经机理及其外周电刺激抑制的研究[D].上海:上海交通大学, 2018. Hao M Z. Spinal neural mechanism underlying Parkingsonian rest tremor and effectiveness of inhibition by transcutaneous electrical nerve stimulation[D]. Shanghai: Shanghai Jiao Tong University, 2018. [31] Langhorne P, Bernhardt J, Kwakkel G. Stroke rehabilitation[J]. The Lancet, 2011, 377(9778): 1693-1702. [32] Donnan G A, Fisher M, Macleod M, et al. Stroke[J]. The Lancet, 2008, 371(9624): 1612-1623. [33] Yao J, Dewald J P A. The increase in overlap of cortical activity preceding static elbow/shoulder motor tasks is associated with limb synergies in severe stroke[J]. Neurorehabilitation and Neural Repair, 2018, 32(6-7): 624-634. [34] O’Sullivan S B, Schmitz T J, Fulk G. Physical rehabilitation[M]. 7th ed. Philadelphia, USA: F.A. Davis, 2019. [35] Petzinger G M, Fisher B E, McEwen S, et al. Exerciseenhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease[J]. The Lancet Neurology, 2013, 12(7): 716-726. [36] Hirsch M A, Iyer S S, Sanjak M. Exercise-induced neuroplasticity in human Parkinson’s disease: What is the evidence telling us?[J]. Parkinsonism & Related Disorders, 2016, 22(S1): S78-S81. [37] Hou L J, Chen W, Liu X L, et al. Exercise-induced neuroprotection of the nigrostriatal dopamine system in Parkinson’s disease[J]. Frontiers in Aging Neuroscience, 2017, 9. DOI: 10. 3389/fnagi.2017.00358. [38] Ellis T, Rochester L. Mobilizing Parkinson’s disease: The future of exercise[J]. Journal of Parkinson’s Disease, 2018, 8(S1): S95-S100. [39] Mak M K, Wong-Yu I S, Shen X, et al. Long-term effects of exercise and physical therapy in people with Parkinson disease[J]. Nature Reviews Neurology, 2017, 13: 689-703. [40] Keus S, Munneke M, Graziano M, et al. European physiotherapy guideline for Parkinson’s disease[R/OL]. (2019-03-11) [2020-05-25]. https://www.parkinsonnet.nl/app/uploads/sites/3/2019/11/eu_guideline_parkinson_guideline_for_pt_s1.pdf. [41] Keus S H J, Bloem B R, Hendriks E J M, et al. Evidence-based analysis of physical therapy in Parkinson’s disease with recommendations for practice and research[J]. Movement Disorders, 2007, 22(4): 451-460. [42] Morris M E. Movement disorders in people with Parkinson disease: A model for physical therapy[J]. Physical Therapy, 2000, 80(6): 578-597. [43] Bloem B R, de Vries N M, Ebersbach G. Nonpharmacological treatments for patients with Parkinson’s disease[J]. Movement Disorders, 2015, 30(11): 1504-1520. [44] Peterka M, Odorfer T, Schwab M, et al. LSVT-BIG therapy in Parkinson’s disease: Physiological evidence for proprioceptive recalibration[J]. BMC Neurology, 2020, 20. DOI: 10.1186/s12883-020-01858-2. [45] Hu B. Sustained relief of multiple types of gait freezing in Parkinson’s disease: A novel, music-based meta-conditioning treatment protocol (Ambulosono) (P4.328)[J]. Neurology, 2016, 86(16S). [46] Chomiak T, Sidhu A S, Watts A, et al. Development and validation of Ambulosono: A wearable sensor for bio-feedback rehabilitation training[J]. Sensors, 2019, 19(3). DOI: 10.3390/ s19030686. [47] 邱纪方,徐聪琴,胡滨,等. 步歌在帕金森病康复治疗中的应用[J].中国康复医学杂志, 2019, 34(3): 349-353. Qiu J F, Xu C Q, Hu B, et al. The application of Ambulosono in the rehabilitation of Parkinson’s disease[J]. Chinese Journal of Rehabilitation Medicine, 2019, 34(3): 349-353. [48] Barthel C, Nonnekes J, van Helvert M, et al. The laser shoes: A new ambulatory device to alleviate freezing of gait in Parkinson disease[J]. Neurology, 2018, 90(2). DOI: 10.1212/WNL. 0000000000004795. [49] Ferraye M U, Fraix V, Pollak P, et al. The laser-shoe: A new form of continuous ambulatory cueing for patients with Parkinson’s disease[J]. Parkinsonism & Related Disorders, 2016, 29: 127-128. [50] Graham J V, Eustace C, Brock K, et al. The Bobath concept in contemporary clinical practice[J]. Topics in Stroke Rehabilitation, 2009, 16(1): 57-68. [51] Adler S S, Beckers D, Buck M. PNF in practice: An illustrated guide[M]. Berlin, Germany: Springer, 2008. [52] Hesse S, Werner C, Schonhardt E M, et al. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: A pilot study[J]. Restorative Neurology and Neuroscience, 2007, 25(1): 9-15. [53] Hesse S, Tomelleri C, Bardeleben A, et al. Robot-assisted practice of gait and stair climbing in nonambulatory stroke patients [J]. Journal of Rehabilitation Research & Development, 2012, 49(4): 613-622. [54] Krebs H I, Hogan N, Volpe B T, et al. Overview of clinical trials with MIT-MANUS: A robot-aided neuro-rehabilitation facility[J]. Technology and Health Care, 1999, 7(6): 419-423. [55] Zariffa J, Kapadia N, Kramer J L K, et al. Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2012, 20(3): 341-350. [56] Varoqui D, Niu X, Mirbagheri M M. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury[J]. Journal of NeuroEngineering and Rehabilitation, 2014, 11. DOI: 10.1186/1743-0003-11-46. [57] Nam K Y, Kim H J, Kwon B S, et al. Robot-assisted gait training (Lokomat) improves walking function and activity in people with spinal cord injury: A systematic review[J]. Journal of NeuroEngineering and Rehabilitation, 2017, 14. DOI: 10. 1186/s12984-017-0232-3. [58] Gilliaux M, Renders A, Dispa D, et al. Upper limb robotassisted therapy in cerebral palsy: A single-blind randomized controlled trial[J]. Neurorehabilitation and Neural Repair, 2015, 29(2): 183-192. [59] Cherni Y, Girardin-Vignola G, Ballaz L, et al. Reliability of maximum isometric hip and knee torque measurements in children with cerebral palsy using a paediatric exoskeletonLokomat[J]. Neurophysiologie Clinique, 2019, 49(4): 335- 342. [60] van Kammen K, Reinders-Messelink H A, Elsinghorst A L, et al. Amplitude and stride-to-stride variability of muscle activity during Lokomat guided walking and treadmill walking in children with cerebral palsy[J]. European Journal of Paediatric Neurology, 2020, 29: 108-117. [61] Hesse S, Schulte-Tigges G, Konrad M, et al. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects[J]. Archives of Physical Medicine and Rehabilitation, 2003, 84(6): 915- 920. [62] Hesse S, Waldner A, Tomelleri C. Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients[J]. Journal of NeuroEngineering and Rehabilitation, 2010, 7. DOI: 10.1186/1743-0003-7-30. [63] Hesse S, Uhlenbrock D. A mechanized gait trainer for restoration of gait[J]. Journal of Rehabilitation Research and Development, 2000, 37(6): 701-708. [64] Hogan N, Krebs H I, Sharon A, et al. Interactive robotic therapist: US5466213[P]. 1995-11-14. [65] Hogan N, Krebs H I, Charnnarong J, et al. MIT-MANUS: A workstation for manual therapy and training. I[C]//IEEE International Workshop on Robot and Human Communication. Piscataway, USA: IEEE, 1992: 161-165. [66] Cappello L, Elangovan N, Contu S, et al. Robot-aided assessment of wrist proprioception[J]. Frontiers in Human Neuroscience, 2015, 9. DOI: 10.3389/fnhum.2015.00198. [67] Lukos J R, Snider J, Hernandez M E, et al. Parkinson’s disease patients show impaired corrective grasp control and eye– hand coupling when reaching to grasp virtual objects[J]. Neuroscience, 2013, 254: 205-221. [68] Martelli D, Vashista V, Micera S, et al. Direction-dependent adaptation of dynamic gait stability following waist-pull perturbations[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(12): 1304-1313. [69] Martelli D, Luo L, Kang J, et al. Adaptation of stability during perturbed walking in Parkinson’s disease[J]. Scientific Reports, 2017, 7. DOI: 10.1038/s41598-017-18075-6. [70] Jezernik S, Colombo G, Keller T, et al. Robotic orthosis Lokomat: A rehabilitation and research tool[J]. Neuromodulation: Technology at the Neural Interface, 2003, 6(2): 108-115. [71] Lünenburger L, Colombo G, Riener R. Biofeedback for robotic gait rehabilitation[J]. Journal of NeuroEngineering and Rehabilitation, 2007, 4. DOI: 10.1186/1743-0003-4-1. [72] Hidler J, Nichols D, Pelliccio M, et al. Advances in the understanding and treatment of stroke impairment using robotic devices[J]. Topics in Stroke Rehabilitation, 2005, 12(2): 22- 35. [73] Elangovan N, Tuite P J, Konczak J. Somatosensory training improves proprioception and untrained motor function in Parkinson’s disease[J]. Frontiers in Neurology, 2018, 9. DOI: 10.3389/fneur.2018.01053. [74] Wu C Y, Yang C L, Chen M D, et al. Unilateral versus bilateral robot-assisted rehabilitation on arm-trunk control and functions post stroke: A randomized controlled trial[J]. Journal of NeuroEngineering and Rehabilitation, 2013, 10. DOI:10.1186/1743-0003-10-35. [75] Hesse S, Uhlenbrock D, Werner C, et al. A mechanized gait trainer for restoring gait in nonambulatory subjects[J]. Archives of Physical Medicine and Rehabilitation, 2000, 81(9): 1158-1161. [76] Reha Technology. Reha Technology: Products[EB/OL]. [2021-06-20]. https://www.rehatechnology.com/en/. [77] Díaz I, Gil J J, Sánchez E. Lower-limb robotic rehabilitation: Literature review and challenges[J]. Journal of Robotics, 2011. DOI: 10.1155/2011/759764. [78] Krebs H, Hogan N, Hening W, et al. Procedural motor learning in Parkinson’s disease[J]. Experimental Brain Research, 2001, 141: 425-437. [79] Masia L, Casadio M, Sandini G, et al. Eye-hand coordination during dynamic visuomotor rotations[J]. PLoS One, 2009, 4(9). DOI: 10.1371/journal.pone.0007004. [80] Picelli A, Tamburin S, Passuello M, et al. Robot-assisted arm training in patients with Parkinson’s disease: A pilot study[J]. Journal of NeuroEngineering and Rehabilitation, 2014, 11. DOI: 10.1186/1743-0003-11-28. [81] Mathiowetz V, Weber K, Kashman N, et al. Adult norms for the nine hole peg test of finger dexterity[J]. The Occupational Therapy Journal of Research, 1985, 5(1): 24-38. [82] Fugl-Meyer A R, Jääskö L, Leyman I, et al. The post-stroke hemiplegic patient. 1. A method for evaluation of physical performance[J]. Scandinavian Journal of Rehabilitation Medicine, 1975, 7(1): 13-31. [83] Lo A C, Chang V C, Gianfrancesco M A, et al. Reduction of freezing of gait in Parkinson’s disease by repetitive robotassisted treadmill training: A pilot study[J]. Journal of NeuroEngineering and Rehabilitation, 2010, 7. DOI: 10.1186/1743- 0003-7-51. [84] Jenkinson C, Fitzpatrick R, Peto V, et al. The Parkinson’s disease questionnaire (PDQ-39): Development and validation of a Parkinson’s disease summary index score[J]. Age and Ageing, 1997, 26(5): 353-357. [85] Nardo A, Anasetti F, Servello D, et al. Quantitative gait analysis in patients with Parkinson treated with deep brain stimulation: The effects of a robotic gait training[J]. NeuroRehabilitation, 2014, 35(4): 779-788. [86] Barbe M T, Cepuran F, Amarell M, et al. Long-term effect of robot-assisted treadmill walking reduces freezing of gait in Parkinson’s disease patients: A pilot study[J]. Journal of Neurology, 2013, 260: 296-298. [87] Picelli A, Melotti C, Origano F, et al. Robot-assisted gait training versus equal intensity treadmill training in patients with mild to moderate Parkinson’s disease: A randomized controlled trial[J]. Parkinsonism & Related Disorders, 2013, 19(6): 605-610. [88] Capecci M, Pournajaf S, Galafate D, et al. Clinical effects of robot-assisted gait training and treadmill training for Parkinson’s disease. A randomized controlled trial[J]. Annals of Physical and Rehabilitation Medicine, 2019, 62(5): 303-312. [89] Sale P, de Pandis M F, le Pera D, et al. Robot-assisted walking training for individuals with Parkinson’s disease: A pilot randomized controlled trial[J]. BMC Neurology, 2013, 13. DOI: 10. 1186/1471-2377-13-50. [90] Picelli A, Melotti C, Origano F, et al. Robot-assisted gait training is not superior to balance training for improving postural instability in patients with mild to moderate Parkinson’s disease: A single-blind randomized controlled trial[J]. Clinical Rehabilitation, 2015, 29(4): 339-347. [91] 孙建,向馗,高理富,等. 基于外骨骼机器人技术的人体手臂震颤抑制的理论和方法[J].智能系统学报, 2012, 7(4): 283-293. Sun J, Xiang K, Gao L F, et al. A comprehensive review of fundamental theory and methodology for tremor suppression of human arm based on robotic exoskeleton technology[J]. CAAI Transactions on Intelligent Systems, 2012, 7(4): 283-293. [92] Rocon E, Belda-Lois J M, Ruiz A F, et al. Design and validation of a rehabilitation robotic exoskeleton for tremor assessment and suppression[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3): 367-378. [93] 孙建. 基于外骨骼机器人技术的人体手臂震颤抑制关键技术研究[D].合肥:中国科学技术大学, 2010. Sun J. The study of key techniques for hand tremor suppression based on the wearable exoskeleton robot techniques[D]. Hefei: University of Science and Technology of China, 2010. [94] Kiguchi K, Hayashi Y, Asami T. An upper-limb power-assist robot with tremor suppression control[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2011. DOI: 10.1109/ICORR.2011.5975390. [95] 李军强. 面向病理性震颤的抑震机器人及其关键技术研究[D].哈尔滨:哈尔滨工业大学, 2010. Li J Q. Research on tremor suppression robot and key techniques for pathological tremor[D]. Harbin: Harbin Institute of Technology, 2010. [96] Manto M, Topping M, Soede M, et al. Dynamically responsive intervention for tremor suppression[J]. IEEE Engineering in Medicine Biology Magazine, 2003, 22(3): 120-132. [97] Loureiro R C V, Belda-Lois J M, Lima E R, et al. Upper limb tremor suppression in ADL via an orthosis incorporating a controllable double viscous beam actuator[C]//9th International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2005: 119-122. [98] Taheri B. Real-time pathological tremor identification and suppression in human arm via active orthotic devices[D]. Dallas, USA: Southern Methodist University, 2013. [99] Taheri B, Case D, Richer E. Adaptive suppression of severe pathological tremor by torque estimation method[J]. IEEE/ ASME Transactions on Mechatronics, 2015, 20(2): 717-727. [100] Herrnstadt G, McKeown M J, Menon C. Controlling a motorized orthosis to follow elbow volitional movement: Tests with individuals with pathological tremor[J]. Journal of NeuroEngineering and Rehabilitation, 2019, 16. DOI: 10.1186/s12984- 019-0484-1. [101] Goetz C G, Tilley B C, Shaftman S R, et al. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS) : Scale presentation and clinimetric testing results[J]. Movement Disorders, 2008, 23(15): 2129-2170. [102] Gladstone D J, Danells C J, Black S E. The Fugl-Meyer assessment of motor recovery after stroke: A critical review of its measurement properties[J]. Neurorehabilitation and Neural Repair, 2002, 16(3): 232-240. [103] Ospina B M, Chaparro J A V, Paredes J D A, et al. Objective arm swing analysis in early-stage Parkinson’s disease using an RGB-D camera (Kinect)[J]. Journal of Parkinson’s Disease, 2018, 8(4): 563-570. [104] Liu Y, Chen J S, Hu C H, et al. Vision-based method for automatic quantification of Parkinsonian bradykinesia[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(10): 1952-1961. [105] Sibley K G, Girges C, Hoque E, et al. Video-based analyses of Parkinson’s disease severity: A brief review[J]. Journal of Parkinson’s Disease, 2021, 11(S1): S83-S93. [106] Aghanavesi S, Bergquist F, Nyholm D, et al. Motion sensorbased assessment of Parkinson’s disease motor symptoms during leg agility tests: Results from levodopa challenge[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(1): 111-119. [107] Godinho C, Domingos J, Cunha G, et al. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease[J]. Journal of NeuroEngineering and Rehabilitation, 2016, 13. DOI: 10.1186/s12984-016-0136- 7. [108] Ancona S, Faraci F D, Khatab E, et al. Wearables in the homebased assessment of abnormal movements in Parkinson’s disease: A systematic review of the literature[J]. Journal of Neurology, 2021. DOI: 10.1007/s00415-020-10350-3. [109] Geraedts V J, Boon L I, Marinus J, et al. Clinical correlates of quantitative EEG in Parkinson disease: A systematic review[J]. Neurology, 2018, 91(19). DOI: 10.1212/WNL. 0000000000006473. [110] Chaturvedi M, Bogaarts J G, Kozak V V, et al. Phase lag index and spectral power as QEEG features for identification of patients with mild cognitive impairment in Parkinson’s disease [J]. Clinical Neurophysiology, 2019, 130(10): 1937-1944. [111] Abtahi M, Borgheai S B, Jafari R, et al. Merging fNIRSEEG brain monitoring and body motion capture to distinguish Parkinsons disease[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(6): 1246-1253. [112] Wang K L, Burns M, Xu D, et al. Electromyography biomarkers for quantifying the intraoperative efficacy of deep brain stimulation in Parkinson’s patients with resting tremor[J]. Frontiers in Neurology, 2020, 11. DOI: 10.3389/fneur.2020. 00142. [113] Ruonala V, Pekkonen E, Airaksinen O, et al. Levodopainduced changes in electromyographic patterns in patients with advanced Parkinson’s disease[J]. Frontiers in Neurology, 2018, 9. DOI: 10.3389/fneur.2018.00035. [114] Miller A M, Miocinovic S, Swann N C, et al. Effect of levodopa on electroencephalographic biomarkers of the Parkinsonian state[J]. Journal of Neurophysiology, 2019, 122(1): 290- 299. [115] Islam A, Alcock L, Nazarpour K, et al. Effect of Parkinson’s disease and two therapeutic interventions on muscle activity during walking: A systematic review[J]. npj Parkinson’s Disease, 2020, 6. DOI: 10.1038/s41531-020-00119-w. [116] Maggioni E, Arienti F, Minella S, et al. Effective connectivity during rest and music listening: An EEG study on Parkinson’s disease[J]. Frontiers in Aging Neuroscience, 2021, 13. DOI: 10.3389/fnagi.2021.657221. [117] Masiero S, Carraro U. Rehabilitation medicine for elderly patients[M]//Practical Issues in Geriatrics. Berlin, Germany: Springer, 2018. [118] Reinkensmeyer D J, Dietz V. Neurorehabilitation technology [M]. Berlin, Germany: Springer, 2016. [119] Krakauer J W, Hadjiosif A M, Xu J, et al. Motor learning[J]. Comprehensive Physiology, 2019, 9(2): 613-663. [120] Olson M, Lockhart T E, Lieberman A. Motor learning deficits in Parkinson’s disease (PD) and their effect on training response in gait and balance: A narrative review[J]. Frontiers in Neurology, 2019, 10. DOI: 10.3389/fneur.2019.00062. [121] Sweeney D, Quinlan L R, Browne P, et al. A technological review of wearable cueing devices addressing freezing of gait in Parkinson’s disease[J]. Sensors, 2019, 19(6). DOI: 10.3390/ s19061277. [122] Nieuwboer A. Cueing for freezing of gait in patients with Parkinson’s disease: A rehabilitation perspective[J]. Movement Disorders, 2008, 23(S2): S475-S481. [123] Canning C G. The effect of directing attention during walking under dual-task conditions in Parkinson’s disease[J]. Parkinsonism & Related Disorders, 2005, 11(2): 95-99. [124] Raffegeau T E, Krehbiel L M, Kang N, et al. A meta-analysis: Parkinson’s disease and dual-task walking[J]. Parkinsonism & Related Disorders, 2019, 62: 28-35. [125] Wagner F B, Mignardot J B, le Goff-Mignardot C G, et al. Targeted neurotechnology restores walking in humans with spinal cord injury[J]. Nature, 2018, 563: 65-71. [126] Gill M L, Grahn P J, Calvert J S, et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia[J]. Nature Medicine, 2018, 24: 1677- 1682. [127] Bouthour W, Mégevand P, Donoghue J, et al. Biomarkers for closed-loop deep brain stimulation in Parkinson disease and beyond[J]. Nature Reviews Neurology, 2019, 15: 343-352. [128] Parastarfeizabadi M, Kouzani A Z. Advances in closed-loop deep brain stimulation devices[J]. Journal of NeuroEngineering and Rehabilitation, 2017, 14. DOI: 10.1186/s12984-017- 0295-1. [129] Boddington L J, Reynolds J N J. Targeting interhemispheric inhibition with neuromodulation to enhance stroke rehabilitation[J]. Brain Stimulation, 2017, 10(2): 214-222. [130] Lefaucheur J P, Andre-Obadia N, Antal A, et al. Evidencebased guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS)[J]. Clinical Neurophysiology, 2014, 125(11): 2150-2206. [131] Lefaucheur J P, Aleman A, Baeken C, et al. Evidencebased guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014-2018)[J]. Clinical Neurophysiology, 2020, 131(2): 474-528. [132] Yang Y R, Tseng C Y, Chiou S Y, et al. Combination of rTMS and treadmill training modulates corticomotor inhibition and improves walking in Parkinson disease: A randomized trial[J]. Neurorehabilitation and Neural Repair, 2013, 27(1): 79-86. [133] Nardone R, Versace V, Brigo F, et al. Transcranial magnetic stimulation and gait disturbances in Parkinson’s disease: A systematic review[J]. Neurophysiologie Clinique, 2020, 50(3): 213-225. [134] Chung C L H, Mak M K Y, Hallett M. Transcranial magnetic stimulation promotes gait training in Parkinson disease[J]. Annals of Neurology, 2020, 88(5): 933-945. [135] Valentino F, Cosentino G, Brighina F, et al. Transcranial direct current stimulation for treatment of freezing of gait: A crossover study[J]. Movement Disorders, 2014, 29(8): 1064-1069. [136] Dagan M, Herman T, Harrison R, et al. Multitarget transcranial direct current stimulation for freezing of gait in Parkinson’s disease[J]. Movement Disorders, 2018, 33(4): 642-646. [137] Copur E H, Freeman C, Chu B, et al. FES based tremor suppression using repetitive control[C]//54th IEEE Conference on Decision and Control. Piscataway, USA: IEEE, 2015: 6023- 6028. [138] Djurić-JovičićM, Radovanović S, Petrović I, et al. The impact of functional electrical stimulation (FES) on freezing of gait (FOG) in patients with Parkinson’s disease[J]. Clinical Neurophysiology, 2013, 124(7). DOI: 10.1016/j.clinph.2012.12.019. [139] Sijobert B, Azevedo C, Andreu D, et al. Effects of sensitive electrical stimulation-based somatosensory cueing in Parkinson’s disease gait and freezing of gait assessment[J]. Artificial Organs, 2017, 41(11): E222-E232. [140] Shapkova E Y, Pismennaya E V, Emelyannikov D V, et al. Exoskeleton walk training in paralyzed individuals benefits from transcutaneous lumbar cord tonic electrical stimulation[J]. Frontiers in Neuroscience, 2020, 14. DOI: 10.3389/fnins. 2020.00416. [141] Sampson P, Freeman C, Coote S, et al. Using functional electrical stimulation mediated by iterative learning control and robotics to improve arm movement for people with multiple sclerosis[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2016, 24(2): 235-248. [142] Biernacki K, Lin M H, Baker T E. Recovery of reward function in problematic substance users using a combination of robotics, electrophysiology, and TMS[J]. International Journal of Psychophysiology, 2020, 158: 288-298. [143] Noccaro A, Mioli A, D’Alonzo M, et al. Development and validation of a novel calibration methodology and control approach for robot-aided transcranial magnetic stimulation (TMS)[J]. IEEE Transactions on Biomedical Engineering, 2021, 68(5): 1589-1600. [144] Perez-Marcos D. Virtual reality experiences, embodiment, videogames and their dimensions in neurorehabilitation[J]. Journal of NeuroEngineering and Rehabilitation, 2018, 15. DOI: 10.1186/s12984-018-0461-0. [145] Georgiades M J, Gilat M, Martens K A E, et al. Investigating motor initiation and inhibition deficits in patients with Parkinson’s disease and freezing of gait using a virtual reality paradigm[J]. Neuroscience, 2016, 337: 153-162. [146] Canning C G, Allen N E, Nackaerts E, et al. Virtual reality in research and rehabilitation of gait and balance in Parkinson disease[J]. Nature Reviews Neurology, 2020, 16: 409-425. [147] Carroll L M, Morris M E, O’Connor W T, et al. Is aquatic therapy optimally prescribed for Parkinson’s disease? A systematic review and meta-analysis[J]. Journal of Parkinson’s Disease, 2020, 10(1): 59-76. [148] Volpe D, Giantin M G, Maestri R, et al. Comparing the effects of hydrotherapy and land-based therapy on balance in patients with Parkinson’s disease: A randomized controlled pilot study[J]. Clinical Rehabilitation, 2014, 28(12): 1210-1217. [149] 陈鹏,刘慧林,王少松,等. 火针颅底穴配合体针治疗原发性帕金森病27例[J].中国针灸, 2021, 41(1): 71-72. Chen P, Liu H L, Wang S S, et al. Fire needling and body acupuncture for 27 cases of primary Parkinson’s disease[J]. Chinese Acupuncture & Moxibustion, 2021, 41(1): 71-72. [150] Wang Q, Meng L, Pang J, et al. Characterization of EEG data revealing relationships with cognitive and motor symptoms in Parkinson’s disease: A systematic review[J]. Frontiers in Aging Neuroscience, 2020, 12. DOI: 10.3389/fnagi.2020.587396. [151] Biasiucci A, Leeb R, Iturrate I, et al. Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke[J]. Nature Communications, 2018, 9. DOI: 10.1038/ s41467-018-04673-z. [152] Ambrosini E, Gasperini G, Zajc J, et al. A robotic system with EMG-triggered functional eletrical stimulation for restoring arm functions in stroke survivors[J]. Neurorehabilitation and Neural Repair, 2021, 35(4): 334-345. [153] Berger A, Horst F, Müller S, et al. Current state and future prospects of EEG and fNIRS in robot-assisted gait rehabilitation: A brief review[J]. Frontiers in Human Neuroscience, 2019, 13. DOI: 10.3389/fnhum.2019.00172. [154] Tariq M, Trivailo P M, Simic M. EEG-based BCI control schemes for lower-limb assistive-robots[J]. Frontiers in Human Neuroscience, 2018, 12. DOI: 10.3389/fnhum.2018.00312.