A Cheetah-mimicking Quadruped Running Robot with 2DOF Articulated Trunk
WANG Qi1, ZHANG Xiuli1, JIANG Lei2, HUANG Senwei1, YAO Yan'an1
1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China; 2. China North Vehicle Research Institute, Beijing 100072, China
Abstract:In order to explore the mechanism of leg movements enhanced by spinal movements, a cheetah-mimicking quadruped running robot with 2-DOF (degree of freedom) articulated trunk is designed. The mechanical processes of the running motion in bound gait with flying phase are described. The dynamics model of the quadruped robot is established using a damped spring loaded inverted pendulum (D-SLIP) model. Referring to the running mode of cheetahs, the trajectories of the coupled motions of the spine joints and leg joints of the quadruped robot are planned. An improved PSO (particle swarm optimization) algorithm is proposed to solve the nested optimization problem with target mutual exclusion between the dimensional parameters of actuation mechanism of robot spine joint and the control parameters of motion trajectory. The dynamic simulations of the running motion of the quadruped robot in bound gait are carried out. The results show that the coordinated movements between the spine and the legs can increase the stride length of the quadruped robot and allow the robot generating flying phases, so as to improve the running speed of the robot.
[1] Hildebrand M. Motions of the running cheetah and horse[J]. Journal of Mammalogy, 1959, 40(4): 481-495. [2] Hildebrand M. Further studies on locomotion of the cheetah[J]. Journal of Mammalogy, 1961, 42(1): 84-91. [3] Gambaryan P P. How mammals run: Anatomical adaptations[J]. BioScience, 1975, 25(8): 520. [4] Schilling N, Hackert R. Sagittal spine movements of small therian mammals during asymmetrical gaits[J]. Journal of Experimental Biology, 2006, 209(19): 3925-3939. [5] Alexander R M, Dimery N J, Ker R F. Elastic structures in the back and their role in galloping in some mammals[J]. Journal of Zoology, 1985, 207(4): 467-482. [6] Gray J. How animals move[M]. Cambridge, UK: Cambridge University Press, 1953. [7] Semini C, Tsagarakis N G, Guglielmino E, et al. Design of HyQ - A hydraulically and electrically actuated quadruped robot[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2011, 225(I6): 831-849. [8] Semini C, Barasuol V, Goldsmith J, et al. Design of the hydraulically actuated, torque-controlled quadruped robot HyQ2Max[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 635-646. [9] Hutter M, Gehring C, Jud D, et al. ANYmal - A highly mobile and dynamic quadrupedal robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2016: 38-44. [10] Park H W, Park S, Kim S. Variable-speed quadrupedal bounding using impulse planning: Untethered high-speed 3D running of MIT Cheetah 2[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2015: 5163-5170. [11] Bledt G, Powell M J, Katz B G, et al. MIT Cheetah 3: Design and control of a robust, dynamic quadruped robot[C]//IEEE/RSJ International Conference of Intelligent Robots and Systems. Piscataway, USA: IEEE, 2018: 2245-2252. [12] Katz B G. A low cost modular actuator for dynamic robots[D]. Boston, USA: MIT, 2018. [13] 刘京运.从 Big Dog 到 Spot Mini:波士顿动力四足机器人进化史[J].机器人产业,2018(2):109-116.Liu J Y. From Big Dog to Spot Mini: Evolution history of Boston Dynamics quadruped robot[J]. Robot Industry, 2018(2): 109-116. [14] 荣学文.SCalf 液压驱动四足机器人的机构设计与运动分析[D].济南:山东大学,2013.Rong X W. Mechanism design and kinematics analysis of a hydraulically actuated quadruped robot SCalf[D]. Jinan: Shandong University, 2013. [15] 柴汇,孟健,荣学文,等.高性能液压驱动四足机器人 SCalf 的设计与实现[J].机器人,2014,36(4):385-391. Chai H, Meng J, Rong X W, et al. Design and implementation of SCalf, an advanced hydraulic quadruped robot[J]. Robot, 2014, 36(4): 385-391. [16] Unitree. Laikago[EB/OL]. (2017-10-14) [2021-03-01]. http:// www.unitree.cc/cn/e/action/ShowInfo.php?classid=6&id=1. [17] Unitree. Aliengo[EB/OL]. (2021-02-11) [2021-03-01]. http:// www.unitree.cc/cn/e/action/ShowInfo.php?classid=6&id=359. [18] 朱秋国.“绝影”机器人助力智慧安防[J].中国测绘,2019(3): 31-33.Zhu Q G. “Jue Ying” robot helps intelligent security[J]. China Surveying and Mapping, 2019(3): 31-33. [19] Seok S, Wang A, Chuah M Y, et al. Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2013: 3307-3312. [20] Seok S, Wang A, Chuah M Y, et al. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(3): 1117-1129. [21] Zhao Q, Ellenberger B, Sumioka H, et al. The effect of spine actuation and stiffness on a pneumatically-driven quadruped robot for cheetah-like locomotion[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA: IEEE, 2013: 1807-1812. [22] 吴海波.具有可变刚度的四足机器人仿生脊柱设计与应用研究[D].北京:北京交通大学,2016. Wu H B. Design of a bionic variable stiffness spine and its application to quadruped robot[D]. Beijing: Beijing Jiaotong University, 2016. [23] Wang C L, Wang S G. Bionic control of cheetah bounding with a segmented spine[J]. Applied Bionics and Biomechanics, 2016. DOI: 10.1155/2016/5031586. [24] 聂华.具柔性脊柱的四足机器人结构优化与控制[D].武汉:华中科技大学,2016. Nie H. Research on structure optimization and control of quadruped robot with flexible spine[D]. Wuhan: Huazhong University of Science and Technology, 2016. [25] 谭小康.具有主动脊柱的四足机器人结构设计与仿生控制研究[D].北京:北京交通大学,2018. Tan X K. Structural design and bionic control of a quadruped robot with actuated spine[D]. Beijing: Beijing Jiaotong University, 2018. [26] Raibert M H, Brown H B, Chepponis M Jr. Experiments in balance with a 3D one-legged hopping machine[J]. International Journal of Robotics Research, 1984, 3(2): 75-92. [27] Raibert M H. Trotting, pacing and bounding by a quadruped robot[J]. Journal of Biomechanics, 1990, 23(1): 79-81,83-98. [28] Raibert M. H. Legged robots that balance[M]. Boston, USA: MIT Press, 1986. [29] Eckert P. Towards agility: Definition, benchmark and design considerations for small, quadrupedal robots[D]. Lausanne, Switzerland: Swiss Federal Institute of Technology in Lausanne, 2018.