Motion Parameters Estimation of Underwater Moving Target Based onIterative Optimization Algorithm for an AUV
KANG Xiaodong1, LI Yiping2,3,4
1. Department of Electrical Engineering, Shanghai Dianji University, Shanghai 201306, China; 2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shengyang 110016, China; 3. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; 4. Key Laboratory of Marine Robotics, Liaoning Province, Shenyang 110016, China
Abstract:In order to solve the technical problem of real-time dynamic tracking of underwater moving targets for autonomous underwater vehicle (AUV),an iterative optimization algorithm is proposed,which combines the fading memory recursive least square (FMRLS) algorithm with the square root algorithm.It makes full use of the fast convergence performance of FMRLS algorithm,and uses the square root algorithm to solve the numerical instability problem in the iterative process.The iterative optimization algorithm can quickly calculate the initial distance,the heading angle and the moving direction of the moving target,and the numerical convergence time is about 3 min,as well as the target moving speed can be converged in about 5 min.With the proposed algorithm,the converge time is short,the computing velocity is high,and moreover,an AUV can keep hovering without any form of maneuverer from itself.Those advantages of the proposed algorithm make it a perfect solution for practical engineering problems of underwater moving target tracking.
[1] 徐会希,姜成林. 基于USV与AUV异构平台协同海洋探测系统研究综述[J].中国科学院大学学报, 2021, 38(2):145-159. Xu H X, Jiang C L. Heterogeneous oceanographic exploration system based on USV and AUV:A survey of developments and challenges[J]. Journal of University of Chinese Academy of Sciences, 2021, 38(2):145-159. [2] 李一平,李硕,张艾群. 自主/遥控水下机器人研究现状[J].工程研究, 2016, 8(2):217-222. Li Y P, Li S, Zhang A Q. Research status of autonomous & remotely operated vehicle[J]. Journal of Engineering Studies, 2016, 8(2):217-222. [3] 王艳艳,刘开周,封锡盛. AUV纯方位目标跟踪轨迹优化方法[J].机器人, 2014, 36(2):179-184. Wang Y Y, Liu K Z, Feng X S. Optimal AUV trajectories for bearings-only tracking[J]. Robot, 2014, 36(2):179-184. [4] 董志荣. 主动声呐浮标目标运动分析数学模型[J].电光与控制, 2007, 14(1):5-9. Dong Z R. Mathematical models for target moving analysis through active sonobuoy[J]. Electronics Optics & Control, 2007, 14(1):5-9. [5] Zhang S, Zheng W X. Performance analysis of compressive diffusion normalized LMS algorithm with link noises[C]//IEEE Internatioanl Symposium on Circuits and Systems. Piscataway, USA:IEEE, 2021. DOI:10.1109/ISCAS51556.2021.9401635. [6] 方桂花,王鹤川,高旭. 基于动态遗忘因子递推最小二乘法的永磁同步电机参数辨识算法[J].计算机应用与软件, 2021, 38(1):280-283. Fang G H, Wang H C, Gao X. Parameter identification algorithm of permanent magnet synchronous motor based on dynamic forgetting factor recursive least square method[J]. Computer Applications and Software, 2021, 38(1):280-283. [7] 钱虹,江诚,潘岳凯,等. 基于自适应遗忘因子RLS算法的稳压器模型在线辨识[J].核动力工程, 2019, 40(6):124-129. Qian H, Jiang C, Pan Y K, et.al. Online identification of regulator model based on adaptive forgetting factor RLS algorithm[J]. Nuclear Power Engineering, 2019, 40(6):124-129. [8] 冀大雄,封锡盛,刘开周,等. 综合权值递推最小二乘法估计从UUV航行参数[C]//中国仪器仪表与测控技术报告大会论文集. 2008:310-312. Ji D X, Feng X S, Liu K Z, et. al. Slave-UUV motion analysis using RLS algorithm with synthetical weight[C]//Proceedings of China Instrumentation and Measurement and Control Technology Report Conference. 2008:310-312. [9] 韩曾晋. 自适应控制[M].北京:清华大学出版社, 1995. Han Z J. Adaptive control[M]. Beijing:Tsinghua University Press, 1995. [10] 张树春,胡广大. 平方根滤波及其在目标跟踪方面的应用[J].哈尔滨工业大学学报, 2008, 40(5):700-704. Zhang S C, Hu G D. Square root filtering and its application in target tracking[J]. Journal of Harbin Institute of Technology, 2008, 40(5):700-704. [11] Alexandri T, Diamant R. A reverse bearings only target motion analysis for autonomous underwater vehicle navigation[J]. IEEE Transactions on Mobile Computing, 2019, 18(3):494-506. [12] Clavard J, Pillon D, Pignol A C, et al. Bearings-only target motion analysis of a source in a circular constant speed motion from a non-manueuvering platform[C]//14th International Conference on Information Fusion. Piscataway, USA:IEEE, 2011.