1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Considering the importance of precise and dexterous control technology of space manipulator when performing complex and dangerous space tasks such as on-orbit maintenance, on-orbit assembly and on-orbit refueling, this paper analyzes the development trends of space manipulator from different types of space manipulator configurations and end effectors. 5 key technologies involved in the control process of space manipulators are summarized, including rendezvous, docking and capture, autonomous planning and intelligent control, sensing and perception, intelligent cooperation and control, and system security. Finally, the future development directions and prospect are put forward according to the problems existing in the control process of space manipulator.
[1] Ellery A, Kreisel J, Sommer B. The case for robotic on-orbit servicing of spacecraft:Spacecraft reliability is a myth[J]. Acta Astronautica, 2008, 63(5-6):632-648. [2] Williams P A, Dempsey J A, Hamill D, et al. Space science and technology partnership forum:Value proposition, strategic framework, and capability needs for in-space assembly[C]//AIAA SPACE and Astronautics Forum and Exposition. Reston, USA:AIAA, 2018. DOI:10.2514/6.2018-5140. [3] Sullivan B R, Akin D L. A survey of serviceable spacecraft failures[C]//AIAA Space 2001 Conference and Exposition. Reston, USA:AIAA, 2001. DOI:10.2514/6.2001-4540. [4] Zhao P Y, Liu J G, Wu C C. Survey on research and development of on-orbit active debris removal methods[J]. Science China:Technological Sciences, 2020, 63(11):2188-2210. [5] Davinic N, Arkus A, Chappie S, et al. Cost-benefit analysis of on-orbit satellite servicing[J]. Journal of Reducing Space Mission Cost, 1998, 1(1):27-52. [6] Xue Z H, Liu J G, Wu C C, et al. Review of in-space assembly technologies[J]. Chinese Journal of Aeronautics, 2021, 34(11):21-47. [7] Goddard Space Flight Center. On-orbit satellite servicing study project report[R]. Washington, USA:NASA, 2010. [8] Flores-Abad A, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26. [9] Rembala R, Ower C. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience[J]. Acta Astronautica, 2009, 65(7-8):912-920. [10] Jorgensen G, Bains E. SRMS history, evolution and lessons learned[C]//AIAA SPACE 2011 Conference and Exposition. Reston, USA:AIAA, 2012. DOI:10.2514/6.2011-7277. [11] Stieber M F, Trudel C P, Hunter D G. Robotic systems for the International Space Station[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1997:3068-3073. [12] Stieber M E, Trudel C P. Advanced control system features of the space station remote manipulator system[J]. IFAC Proceedings Volumes, 1992, 25(22):279-286. [13] Feng F, Tang L N, Xu J F, et al. A review of the end-effector of large space manipulator with capabilities of misalignment tolerance and soft capture[J]. Science China:Technological Sciences, 2016, 59(11):1621-1638. [14] Messier D. Canadian space robot Dextre to expand ability to refuel spacecraft in orbit[EB/OL]. (2019-08-15)[2021-05-19]. http://www.parabolicarc.com/2019/08/15/canadian-space-robot-dextre-to-expand-ability-to-refuel-spacecraft-in-orbit/. [15] Government of Canada. About Canadarm3[EB/OL]. (2021-02-02)[2021-05-21]. https://csa-asc.gc.ca/eng/canadarm3/about.asp. [16] Sato N, Wakabayashi Y. JEMRMS design features and topics from testing[C/OL]//6th International Symposium on Artificial Intelligence and Robotics & Automation in Space. 2001. http://robotics.estec.esa.int/i-SAIRAS/isairas2001/papers/Paper_AS007.pdf. [17] Japan Aerospace Exploration Agency. Japanese experiment module remote manipulator system[EB/OL]. (2008-08-29)[2021-01-18]. https://iss.jaxa.jp/en/kibo/about/kibo/rms/. [18] Tatsuo M, Satoh N, Satoh T, et al. Safety approach of Japanese experiment module remote manipulator system[C]//5th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Noordwijk, Netherlands:ESA, 1999:531-537. [19] ESA. European robotic arm[EB/OL].[2021-01-19]. https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/International_Space_Station/European_Robotic_Arm. [20] Laryssa P, Lindsay E, Layi O, et al. International Space Station robotics:A comparative study of ERA, JEMRMS and MSS[C]//7th ESA Workshop on Advanced Space Technologies for Robotics and Automation. Noordwijk, Netherlands:ESA, 2002:19-21. [21] Liu H. An overview of the space robotics progress in China[EB/OL].[2021-06-01]. http://robotics.estec.esa.int/i-SAIRAS/isairas2014/Data/Plenaries/ISAIRAS_FinalPaper_0152.pdf. [22] French E. SPDM overview[EB/OL].[2021-01-19]. https://slideplayer.com/slide/16037899/. [23] Currie N J, Peacock B. International Space Station robotic systems operations-A human factors perspective[J]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2002, 46(1):26-30. [24] Wang Y, Li D, Hu C, et al. Review of research on the Chinese space station robots[C]//International Conference on Intelligent Robotics and Applications. Cham, Switzerland:Springer, 2019:423-430. [25] Ding X L, Wang Y C, Wang Y B, et al. A review of structures, verification, and calibration technologies of space robotic systems for on-orbit servicing[J]. Science China:Technological Sciences, 2021, 64(3):462-480. [26] 李大明, 饶炜, 胡成威, 等. 空间站机械臂关键技术研究[J]. 载人航天, 2014, 20(3):238-242. Li D M, Rao W, Hu C W, et al. Key technology review of the research on the space station manipulator[J]. Manned Spaceflight, 2014, 20(3):238-242. [27] 刘宏, 刘冬雨, 蒋再男. 空间机械臂技术综述及展望[J]. 航空学报, 2021, 42(1):33-46. Liu H, Liu D Y, Jiang Z N. Space manipulator technology:Review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(1):33-46. [28] 机器人学国家重点实验室. 空间站科学手套箱机械臂[EB/OL]. (2020-08-11)[2021-07-17]. http://rlab.sia.cas.cn/sptp/kong/202008/t20200811_574053.html. [29] 祁若龙. 机器人非确定性轨迹规划方法研究[D]. 沈阳:中国科学院沈阳自动化研究所, 2017. Qi R L. Research on robot trajectory planning method under uncertainties[D]. Shenyang:Shenyang Institute of Automation, Chinese Academy of Sciences, 2017. [30] Goeller M, Oberlaender J, Uhl K, et al. Modular robots for on-orbit satellite servicing[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2012:2018-2023. [31] Hoyt R, Cushing J, Slostad J. SpiderFabTM:Process for onorbit construction of kilometer-scale apertures[R]. Bothell, USA:Tethers Unlimited, Inc., 2013. [32] Patane S C, Joyce E R, Snyder M P, et al. Archinaut:In-space manufacturing and assembly for next-generation space habitats[C]//AIAA SPACE and Astronautics Forum and Exposition. Reston, USA:AIAA, 2017. DOI:10.2514/6.2017-5227. [33] Akin D, Roberts B, Roderick S, et al. MORPHbots:lightweight modular self-reconfigurable robotics for space assembly, inspection, and servicing[C]//Space 2006. Reston, USA:AIAA, 2006. DOI:10.2514/6.2006-7408. [34] Zhang Y, Xu W F, Wang Z Y, et al. Dynamic modeling of selfreconfigurable multi-arm space robotic system with variable topology[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2014:599-604. [35] Roa M A, Nottensteiner K, Wedler A, et al. Robotic technologies for in-space assembly operations[C]//14th Symposium on Advanced Space Technologies in Robotics and Automation. Noordwijk, Netherlands:ESA, 2017. [36] NASA. Robonaut2[EB/OL]. (2019-09-10)[2021-01-22]. https://robonaut.jsc.nasa.gov/R2/. [37] Metcalfe T. Meet Skybot F-850, the humanoid robot Russia is launching into space[EB/OL]. (2019-08-20)[2021-01-29]. https://www.space.com/russia-launching-humanoid-robot-intospace.html. [38] Oda M, Kibe K, Yamagata F. ETS-ⅤⅡ, space robot inorbit experiment satellite[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1996:739-744. [39] Hirzinger G, Brunner B, Dietrich J, et al. ROTEX-The first remotely controlled robot in space[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1994:2604-2611. [40] DLR. ROKVISS[EB/OL].[2021-05-20]. https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-15723/#gallery/35441. [41] Friend R B. Orbital express program summary and mission overview[C]//Sensors and Systems for Space Applications Ⅱ. Bellingham, USA:SPIE, 2008. DOI:10.1117/12.783792. [42] NASA. OSAM-1[EB/OL].[2021-02-25]. https://nexis.gsfc.nasa.gov/OSAM-1.html. [43] Beyer A, Grunwald G, Heumos M, et al. CAESAR:Space robotics technology for assembly, maintenance, and repair[C/OL]//69th International Astronautical Congress. 2018.[2021-02-25]. https://elib.dlr.de/122123/. [44] Santaguida L F. Study of autonomous capture and detumble of non-cooperative target by a free-flying space manipulator using an air-bearing platform[D]. Toronto, Canada:York University, 2020. [45] Li W J, Cheng D Y, Liu X G, et al. On-orbit service (OOS) of spacecraft:A review of engineering developments[J]. Progress in Aerospace Sciences, 2019, 108:32-120. [46] NAC TI&E Committee. Kortes in-space robotic manufacturing and assembly (IRMA)[EB/OL]. (2016-11-18)[2021-02-24]. https://www.nasa.gov/directorates/spacetech/nac_ti_committee/index.html. [47] Komendera E E, Doggett W R, Dorsey J. Control system design implementation and preliminary demonstration for a tendon actuated lightweight in-space manipulator (TALISMAN)[C]//AIAA SPACE 2015 Conference and Exposition. Reston, USA:AIAA, 2015. DOI:10.2514/6.2015-4628. [48] Bosse A B, Barnds W J, Brown M A, et al. SUMO:Spacecraft for the universal modification of orbits[C]//Proceedings of the SPIE, Vol. 5419. Bellingham, USA:SPIE, 2004:36-46. [49] Ueno H, Wakabayashi Y, Ohkami Y, et al. Ground testbed of a reconfigurable brachiating space robot[J]. Advanced Robotics, 2000, 14(5):355-358. [50] Borst C, Wimbock T, Schmidt F, et al. Rollin' Justin-Mobile platform with variable base[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2009:1597-1598. [51] Lii N Y, Leidner D, Birkenkampf P, et al. Toward scalable intuitive telecommand of robots for space deploymen t with METERON SUPVIS Justin[C/OL]//14th Symposium on Advanced Space Technologies for Robotics and Automation. Noordwijk, Netherlands:ESA, 2017.[2021-02-25]. https://elib.dlr.de/113125/. [52] Rusconi A, Magnani P, Grasso T, et al. DEXARM-A dextrous robot arm for space applications[C]//8th ESA Workshop on Advanced Space Technologies for Robotics and Automation. Noordwijk, Netherlands:ESA, 2004. [53] Rusconi A, Magnani P, Campo P, et al. DEXARM engineering model development and testing[C]//10th ESA Workshop on Advanced Space Technologies for Robotics and Automation. Noordwijk, Netherlands:ESA, 2008. [54] Xie Z W, Zhao J D, Huang J B, et al. DSP/FPGA-based highly integrated flexible joint robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2009:2397-2402. [55] Liu H, Meusel P, Seitz N, et al. The modular multisensory DLR-HIT-Hand[J]. Mechanism and Machine Theory, 2007, 42(5):612-625. [56] Jiang Z N, Liu H, Wang J, et al. Virtual reality-based teleoperation with robustness against modeling errors[J]. Chinese Journal of Aeronautics, 2009, 22(3):325-333. [57] 刘宏, 李志奇, 刘伊威, 等. 天宫二号机械手关键技术及在轨试验[J]. 中国科学:技术科学, 2018, 48(12):1313-1320. Liu H, Li Z Q, Liu Y W, et al. Key technologies of TianGong-2 robotic hand and its on-orbit experiments[J]. Scientia Sinica:Technologica, 2018, 48(12):1313-1320. [58] Kumar R, Hayes R. System requirements and design features of space station remote manipulator system mechanisms[C]//25th Aerospace Mechanisms Symposium. Washington, USA:NASA, 1991:15-30. [59] 丰飞. 空间大容差末端执行器及其软捕获策略研究[D]. 哈尔滨:哈尔滨工业大学, 2013. Feng F. Research on space large misalignment tolerance endeffector and its soft capture strategy[D]. Harbin:Harbin Institute of Technology, 2013. [60] Feng F, Liu Y W, Liu H, et al. Development of space endeffector with capabilities of misalignment tolerance and soft capture based on tendon-sheath transmission system[J]. Journal of Central South University, 2013, 20(11):3015-3030. [61] Cruijssen H J, Ellenbroek M, Henderson M, et al. The European robotic arm:A high-performance mechanism finally on its way to space[C]//42nd Aerospace Mechanisms Symposium. Washington, USA:NASA, 2014:319-334. [62] Rubinger B, Fulford P, Gregoris L, et al. Self-adapting robotic auxiliary hand (SARAH) for SPDM operations on the International Space Station[C]//6th International Symposium on Artificial Intelligence and Robotics and Automation in Space. Noordwijk, Netherlands:ESA, 2001. [63] Sun K, Liu H, Xie Z W, et al. Structure design of an end effector for the Chinese space station experimental module manipulator[C]//12th International Symposium on Artificial Intelligence and Robotics and Automation in Space. Noordwijk, Netherlands:ESA, 2014. [64] Jacobsen S, Iversen E, Knutti D, et al. Design of the Utah/M.I.T. dextrous hand[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1986:1520-1532. [65] Mason M T, Salisbury J K. Robot hands and the mechanics of manipulation[M]. Cambridge, USA:MIT Press, 1985. [66] Sugano S, Kato I. WABOT-2:Autonomous robot with dexterous finger-arm-Finger-arm coordination control in keyboard performance[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1987:90-97. [67] Liu H, Butterfass J, Knoch S, et al. A new control strategy for DLR's multisensory articulated hand[J]. IEEE Control Systems Magazine, 1999, 19(2):47-54. [68] Lovchik C S, Aldridge H, Driftler M A. Design of the NASA Robonaut hand[J]. ASME Dynamics and Control Division, 1999, 67(38):823-830. [69] Lovchik C S, Diftler M A. The Robonaut hand:A dexterous robot hand for space[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1999:907-912. [70] Bridgwater L B, Ihrke C A, Diftler M A, et al. The Robonaut 2 hand-Designed to do work with tools[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:3425-3430. [71] Butterfass J, Grebenstein M, Liu H, et al. DLR-Hand Ⅱ:Next generation of a dextrous robot hand[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2001:109-114. [72] Chalon M, Wedler A, Baumann A, et al. Dexhand:A space qualified multi-fingered robotic hand[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:2204-2210. [73] DLR. SpaceHand[EB/OL].[2021-05-21]. https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-10894/#gallery/35489. [74] Melchiorri C, Palli G, Berselli G, et al. Development of the UB Hand Ⅳ:Overview of design solutions and enabling technologies[J]. IEEE Robotics & Automation Magazine, 2013, 20(3):72-81. [75] Ficuciello F, Palli G, Melchiorri C, et al. Experimental evaluation of postural synergies during reach to grasp with the UB hand Ⅳ[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2011:1775-1780. [76] Shadow Robot Company. Shadow dexterous hand[EB/OL].[2021-02-15]. https://www.shadowrobot.com/products/dexterous-hand/?utm_source=robots.ieee.org. [77] Robotics S. Shadow dexterous hand technical specifications[EB/OL]. (2013-01-01)[2021-22-16]. https://www.shadowrobot.com/wp-content/uploads/shadow_dexterous_hand_technical_specification_E1_20130101.pdf. [78] DLR. DLR-HIT Hand Ⅱ[EB/OL].[2021-02-06]. https://www.dlr.de/rm/en/desktopdefault.aspx/tabid-11886/#gallery/28917. [79] 李久振, 刘博, 张玉茹. 北航BH-985灵巧手结构设计[C]//全国印刷、包装机械凸轮、连杆机构学术研讨会(第6届全国凸轮机构学术年会). 2005:144-146. Li J Z, Liu B, Zhang Y R. Structure design of BH-985 dexterous hand[C]//6th National Cam Agency Academic Annual Meeting. 2005:144-146. [80] Zhang Y, Han Z, Zhang H, et al. Design and control of the BUAA four-fingered hand[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2001:2517-2522. [81] 闫海江, 靳永强, 魏祥泉, 等. 国际空间站在轨服务技术验证发展分析[J]. 中国科学:技术科学, 2018, 48(2):185-199. Yan H J, Jin Y Q, Wei X Q, et al. Review of on-orbit servicing technique demonstrations on International Space Station and developments[J]. Scientia Sinica:Technologica, 2018, 48(2):185-199. [82] NASA. Robotic refueling mission[EB/OL]. (2013-02-08)[2021-05-24]. https://svs.gsfc.nasa.gov/10988. [83] Government of Canada. About Dextre[EB/OL]. (2018-07-30)[2021-05-24]. https://www.asc-csa.gc.ca/eng/iss/dextre/about.asp. [84] NASA. NASA's refueling mission completes second set of robotic tool operations in space[EB/OL]. (2020-10-24)[2021-07-10]. https://www.nasa.gov/feature/goddard/2020/nasa-s-refueling-mission-completes-second-set-of-robotic-tool-operations-in-space. [85] Zimpfer D, Kachmar P, Tuohy S. Autonomous rendezvous, capture and in-space assembly:Past, present and future[C]//1st Space Exploration Conference:Continuing the Voyage of Discovery. Reston, USA:AIAA, 2005. DOI:10.2514/6.2005-2523. [86] 孙永军, 王钤, 刘伊威, 等. 空间非合作目标捕获方法综述[J]. 国防科技大学学报, 2020, 42(3):74-90. Sun Y J, Wang Q, Liu Y W, et al. A survey of non-cooperative target capturing methods[J]. Journal of National University of Defense Technology, 2020, 42(3):74-90. [87] Boyarko G, Yakimenko O, Romano M. Optimal rendezvous trajectories of a controlled spacecraft and a tumbling object[J]. Journal of Guidance, Control, and Dynamics, 2011, 34(4):1239-1252. [88] Li Q, Yuan J P, Zhang B, et al. Model predictive control for autonomous rendezvous and docking with a tumbling target[J]. Aerospace Science and Technology, 2017, 69:700-711. [89] Sun L, Huo W, Jiao Z X. Adaptive nonlinear robust relative pose control of spacecraft autonomous rendezvous and proximity operations[J]. ISA Transactions, 2017, 67:47-55. [90] Abdollahzadeh P, Esmailifar S M. Automatic orbital docking with tumbling target using sliding mode control[J]. Advances in Space Research, 2021, 67(5):1506-1525. [91] Hirano D, Kato H, Saito T. Online path planning and compliance control of space robot for capturing tumbling large object[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2018:2909-2916. [92] Zhou C, Jin M H, Liu Y C, et al. Singularity robust path planning for real time base attitude adjustment of free-floating space robot[J]. International Journal of Automation and Computing, 2017, 14(2):169-178. [93] Rybus T. Obstacle avoidance in space robotics:Review of major challenges and proposed solutions[J]. Progress in Aerospace Sciences, 2018, 101:31-48. [94] Nenchev D, Umetani Y, Yoshida K. Analysis of a redundant free-flying spacecraft/manipulator system[J]. IEEE Transactions on Robotics and Automation, 1992, 8(1):1-6. [95] Nenchev D N, Yoshida K, Vichitkulsawat P, et al. Reaction null-space control of flexible structure mounted manipulator systems[J]. IEEE Transactions on Robotics and Automation, 1999, 15(6):1011-1023. [96] 魏春岭, 袁泉, 张军, 等. 空间多体系统轨道姿态及机械臂一体化控制[J]. 北京航空航天大学学报, 2020, 46(2):252-258. Wei C L, Yuan Q, Zhang J, et al. Integrated orbit, attitude and manipulator control of space multi-body system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2):252-258. [97] Wu Y H, Yu Z C, Li C Y, et al. Reinforcement learning in dual-arm trajectory planning for a free-floating space robot[J]. Aerospace Science and Technology, 2020, 98. DOI:10.1016/j.ast.2019.105657. [98] Li Y K, Hao X L, She Y C, et al. Constrained motion planning of free-float dual-arm space manipulator via deep reinforcement learning[J]. Aerospace Science and Technology, 2021, 109. DOI:10.1016/j.ast.2020.106446. [99] 汤奇荣, 黎杰, 张凌楷, 等. 基于空间机械臂的柔顺抓捕技术研究综述[J]. 上海航天, 2019, 36(3):111-119. Tang Q R, Li J, Zhang L K, et al. Review of compliant capture with space manipulator[J]. Aerospace Shanghai, 2019, 36(3):111-119. [100] He W, Dong Y. Adaptive fuzzy neural network control for a constrained robot using impedance learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(4):1174-1186. [101] Stolfi A, Gasbarri P, Sabatini M. A combined impedancePD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target[J]. Acta Astronautica, 2017, 139:243-253. [102] Aghili F. Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2009:2365-2372. [103] Aghili F, Parsa K. An adaptive vision system for guidance of a robotic manipulator to capture a tumbling satellite with unknown dynamics[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2008:3064-3071. [104] Liang J X, Ma O. Angular velocity tracking for satellite rendezvous and docking[J]. Acta Astronautica, 2011, 69(11-12):1019-1028. [105] Masoudi R, Mahzoon M. Maneuvering and vibrations control of a free-floating space robot with flexible arms[J]. Journal of Dynamic Systems, Measurement, and Control, 2011, 133(5). DOI:10.1115/1.4004042. [106] Guo C J, Deng S Y, Xu Y L, et al. Multi-sensor fusion for autonomous deep space navigation[C]//33rd International Technical Meeting of the Satellite Division of the Institute of Navigation. Manassas, USA:Institute of Navigation, 2020:290-299. [107] Kelsey J M, Byrne J, Cosgrove M, et al. Vision-based relative pose estimation for autonomous rendezvous and docking[C]//IEEE Aerospace Conference. Piscataway, USA:IEEE, 2006. DOI:10.1109/AERO.2006.1655916. [108] Morency L, Gupta R. Robust real-time egomotion from stereo images[C]//International Conference on Image Processing. Piscataway, USA:IEEE, 2003:719-722. [109] Sinclair D, Blake A, Murray D. Robust estimation of egomotion from normal flow[J]. International Journal of Computer Vision, 1994, 13(1):57-69. [110] Tu Z G, Xie W, Zhang D J, et al. A survey of variational and CNN-based optical flow techniques[J]. Signal Processing:Image Communication, 2019, 72:9-24. [111] Saputra M R U, Markham A, Trigoni N. Visual SLAM and structure from motion in dynamic environments:A survey[J]. ACM Computing Surveys, 2018, 51(2):1-36. [112] Ullah M, Cheikh F A. Deep feature based end-to-end transportation network for multi-target tracking[C]//25th IEEE International Conference on Image Processing. Piscataway, USA:IEEE, 2018:3738-3742. [113] Zhou Y, Li H D, Kneip L. Canny-VO:Visual odometry with RGB-D cameras based on geometric 3-D-2-D edge alignment[J]. IEEE Transactions on Robotics, 2019, 35(1):184-199. [114] Yu J, Lin Y, Wang B, et al. An advanced outlier detected total least-squares algorithm for 3-D point clouds registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(7):4789-4798. [115] Wang H S, Yang B H, Wang J C, et al. Adaptive visual servoing of contour features[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2):811-822. [116] Ren L L, Yuan X, Lu J W, et al. Deep reinforcement learning with iterative shift for visual tracking[C]//European Conference on Computer Vision. Cham, Switzerland:Springer, 2018:697-713. [117] Wang H S, Guo D J, Xu H, et al. Eye-in-hand tracking control of a free-floating space manipulator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4):1855-1865. [118] Hashimoto K. A review on vision-based control of robot manipulators[J]. Advanced Robotics, 2003, 17(10):969-991. [119] 陆熊, 陈晓丽, 孙浩浩, 等. 面向自然人机交互的力触觉再现方法综述[J]. 仪器仪表学报, 2017, 38(10):2391-2399. Lu X, Chen X L, Sun H H, et al. Haptic rendering methods for natural human-computer interaction:A review[J]. Chinese Journal of Scientific Instrument, 2017, 38(10):2391-2399. [120] Winfree K N, Gewirtz J, Mather T, et al. A high fidelity ungrounded torque feedback device:The iTorqU 2.0[C]//World Haptics 2009-3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Piscataway, USA:IEEE, 2009:261-266. [121] Guinan A L, Montandon M N, Doxon A J, et al. Discrimination thresholds for communicating rotational inertia and torque using differential skin stretch feedback in virtual environments[C]//IEEE Haptics Symposium. Piscataway, USA:IEEE, 2014:277-282. [122] Guinan A L, Montandon M N, Doxon A J, et al. An ungrounded tactile feedback device to portray force and torque-like interactions in virtual environments[C]//IEEE Virtual Reality. Piscataway, USA:IEEE, 2014:171-172. [123] 王兴龙, 蔡亚星, 陈士明, 等. 多源信息融合在空间态势感知领域的应用与发展[J]. 航天返回与遥感, 2021, 42(1):11-20. Wang X L, Cai Y X, Chen S M, et al. Application and development of multi-source information fusion in space situational awareness[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(1):11-20. [124] Xu Y C, Yao W, Zheng X H, et al. Satellite system design optimization based on Bayesian melding of multi-level multisource lifetime information[J]. IEEE Access, 2019, 7:103505-103516. [125] Zhang P F, Li T R, Wang G Q, et al. Multi-source information fusion based on rough set theory:A review[J]. Information Fusion, 2020, 68:85-117. [126] Ran Y H, Li X, Lu L, et al. Large-scale land cover mapping with the integration of multi-source information based on the Dempster-Shafer theory[J]. International Journal of Geographical Information Science, 2012, 26(1):169-191. [127] Rizvi S A, Nasrabadi N M. Fusion techniques for automatic target recognition[C]//32nd Applied Imagery Pattern Recognition Workshop. Piscataway, USA:IEEE, 2004:27-32. [128] Nakamura E F, Loureiro A A F, Frery A C. Information fusion for wireless sensor networks:Methods, models, and classifications[J]. ACM Computing Surveys, 2007, 39(3):56-62. [129] Barbera H M, Skarmeta A G, Izquierdo M Z, et al. Neural networks for sonar and infrared sensors fusion[C]//3rd International Conference on Information Fusion. Piscataway, USA:IEEE, 2000. DOI:10.1109/IFIC.2000.859830. [130] Hollander S. Autonomous space robotics:Enabling technologies for advanced space platforms[C]//Space 2000 Conference and Exposition. Reston, USA:AIAA, 2000. DOI:10.2514/6.2000-5079. [131] Hofer L. Decision-making algorithms for autonomous robots[D]. Bordeaux, France:Universite de Bordeaux, 2017. ′ [132] Zykov V, Mytilinaios E, Desnoyer M, et al. Evolved and designed self-reproducing modular robotics[J]. IEEE Transactions on Robotics, 2007, 23(2):308-319. [133] Vasile M, Zuiani F. Multi-agent collaborative search:An agent-based memetic multi-objective optimization algorithm applied to space trajectory design[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2011, 225(11):1211-1227. [134] Garattoni L, Birattari M. Autonomous task sequencing in a robot swarm[J]. Science Robotics, 2018, 3(20). DOI:10.1126/scirobotics.aat0430. [135] Werfel J, Petersen K, Nagpal R. Designing collective behavior in a termite-inspired robot construction team[J]. Science, 2014, 343(6172):754-758. [136] 贾计东, 张明路. 人机安全交互技术研究进展及发展趋势[J]. 机械工程学报, 2020, 56(3):16-30. Jia J D, Zhang M L. Research progress and development trend of the safety of human-robot interaction technology[J]. Journal of Mechanical Engineering, 2020, 56(3):16-30. [137] Schmaus P, Leidner D, Kruger T, et al. Knowledge driven orbit-to-ground teleoperation of a robot coworker[J]. IEEE Robotics and Automation Letters, 2020, 5(1):143-150. [138] Stelzer M, Steinmetz B M, Birkenkampf P, et al. Software architecture and design of the Kontur-2 mission[C]//IEEE Aerospace Conference. Piscataway, USA:IEEE, 2017:1-17. [139] Gallagher W J, Solberg K, Gefke G G, et al. A survey of enabling technologies for in-space assembly and servicing[C]//2018 AIAA SPACE and Astronautics Forum and Exposition. Reston, USA:AIAA, 2018. DOI:10.2514/6.2018-5116. [140] 倪得晶. 面向空间机器人遥操作的环境建模与人机交互技术研究[D]. 南京:东南大学, 2018. Ni D J. Research on technology of environment modelling and human-robot interaction for space robot teleoperation[D]. Nanjing:Southeast University, 2018. [141] 朱碧玉. 基于多种人机交互设备的空间遥操作机器人控制技术研究[D]. 南京:东南大学, 2016. Zhu B Y. Control technology based on different humancomputer interactive devices for space tele-robot[D]. Nanjing:Southeast University, 2016. [142] Anon. Watch:Meet CIMON, the ‘flying brain’ who's the first artificial intelligence robot to go to space[EB/OL].[2021-03-16]. https://scroll.in/video/886106/watch-meet-cimon-the-flying-brain-whos-the-first-artificial-intelligence-robot-to-go-to-space. [143] Gao Q, Liu J G, Ju Z J. Hand gesture recognition using multimodal data fusion and multiscale parallel convolutional neural network for human-robot interaction[J]. Expert Systems, 2020, 38(5). DOI:10.1111/exsy.12490. [144] Gao Q, Liu J G, Ju Z J, et al. Dual-hand detection for humanrobot interaction by a parallel network based on hand detection and body pose estimation[J]. IEEE Transactions on Industrial Electronics, 2019, 66(12):9663-9672. [145] Sirouspour S. Modeling and control of cooperative teleoperation systems[J]. IEEE Transactions on Robotics, 2005, 21(6):1220-1225. [146] Lu Z Y, Huang P F, Liu Z X. Relative impedance-based internal force control for bimanual robot teleoperation with varying time delay[J]. IEEE Transactions on Industrial Electronics, 2019, 67(1):778-789. [147] Swain A K, Morris A S. Dynamic control of multi-arm cooperating manipulator systems[J]. Robotica, 2004, 22(3):271-283. [148] Zhang X, Liu J G, Gao Q, et al. Adaptive robust decoupling control of multi-arm space robots using time-delay estimation technique[J]. Nonlinear Dynamics, 2020, 100(3):2449-2467. [149] Zhang X, Liu J G. Effective motion planning strategy for space robot capturing targets under consideration of the berth position[J]. Acta Astronautica, 2018, 148:403-416. [150] Zhang X, Liu J G, Feng J K, et al. Effective capture of nongraspable objects for space robots using geometric cage pairs[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(1):95-107. [151] Yang C G, Chen J S, Ju Z J, et al. Visual servoing of humanoid dual-arm robot with neural learning enhanced skill transferring control[J]. International Journal of Humanoid Robotics, 2017, 15(2). DOI:10.1142/S0219843617500232. [152] Qu J D, Zhang F H, Wang Y, et al. Human-like coordination motion learning for a redundant dual-arm robot[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57:379-390. [153] Singla P, Subbarao K, Junkins J L. Adaptive output feedback control for spacecraft rendezvous and docking under measure ment uncertainty[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4):892-902. [154] Bai Y, Wang D. Improve the robot calibration accuracy using a dynamic online fuzzy error mapping system[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2004, 34(2):1155-1160. [155] Zhuang H Q, Wu J, Huang W Z. Optimal planning of robot calibration experiments by genetic algorithms[J]. Journal of Robotic Systems, 1997, 14(10):741-752. [156] Wang W D, Song H J, Yan Z Y, et al. A universal index and an improved PSO algorithm for optimal pose selection in kinematic calibration of a novel surgical robot[J]. Robotics and Computer-Integrated Manufacturing, 2018, 50(C):90-101. [157] Xiong G, Ding Y, Zhu L M, et al. A product-of-exponentialbased robot calibration method with optimal measurement configurations[J]. International Journal of Advanced Robotic Systems, 2017, 14(6). DOI:10.1177/1729881417743555. [158] Ni Z Y, Liu J G, Wu S N, et al. Time-varying state-space model identification of an on-orbit rigid-flexible coupling spacecraft using an improved predictor-based recursive subspace algorithm[J]. Acta Astronautica, 2019, 163(B):157-167. [159] Ni Z Y, Liu J G, Wu Z G, et al. Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method[J]. Chinese Journal of Aeronautics, 2019, 32(2):513-530. [160] Piltan F, Kim J-M. Bearing fault diagnosis using an extended variable structure feedback linearization observer[J]. Sensors, 2018, 18(12). DOI:10.3390/s18124359. [161] Capisani L M, Ferrara A, de Loza A F, et al. Manipulator fault diagnosis via higher order sliding-mode observers[J]. IEEE Transactions on Industrial Electronics, 2012, 59(10):3979-3986. [162] Li L L, Ding S X, Qiu J B, et al. Fuzzy observer-based fault detection design approach for nonlinear processes[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017, 47(8):1941-1952.