Overview of Space Robot Manipulation Technology for Takeover Control
LIU Xiyao1,2, CHANG Haitao1,2, HUANG Panfeng1,2, HAN Dong1,2, LU Yingbo3
1. National Key Laboratory of Aerospace Flight Dynamics, Northwestern Polytechnical University, Xi'an 710072, China; 2. Research Center for Intelligent Robotics, School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China; 3. School of Electrical and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
Abstract:In order to extend the life of a malfunctioning satellite in orbit, or remove space debris and failed satellites off from the important orbit locations, it is becoming increasingly important to use space robots to take over the control of attitude or/and orbit of space targets. In this paper, various kinds of control methods which can be used for space targets takeover control are systematically investigated. According to the different contact ways with the target, they are divided into rigid takeover control, tethered flexible takeover control and contactless takeover control. All kinds of control methods are described in detail. Finally, the specific principles, operation modes and key technologies of these three kinds of takeover control methods are systematically summarized and analyzed, their respective characteristics, advantages and disadvantages are summarized, and the theoretical and practical research in related fields is prospected.
[1] ESA. Space debris by the numbers[EB/OL]. (2021-04-15)[2021-05-18]. http://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers. [2] 张博. 空间机器人自主接管非合作目标的轨迹规划与控制研究[D]. 哈尔滨:哈尔滨工业大学, 2017. Zhang B. Research on trajectory planning and control of space robot after autonomously taking over a noncooperative target[D]. Harbin:Harbin Institute of Technology, 2017. [3] 黄攀峰, 鲁迎波, 王明, 等. 参数未知航天器的姿态接管控制[J]. 控制与决策, 2017, 32(9):1547-1555. Huang P F, Lu Y B, Wang M, et al. Attitude takeover control for spacecraft with unknown parameter[J]. Control and Decision, 2017, 32(9):1547-1555. [4] 王明. 空间机器人目标抓捕后姿态接管控制研究[D]. 西安:西北工业大学, 2015. Wang M. Attitude takeover control in post-capture of target by space robot[D]. Xi'an:Northwestern Polytechnical University, 2015. [5] Li W J, Cheng D Y, Liu X G, et al. On-orbit service (OOS) of spacecraft:A review of engineering developments[J]. Progress in Aerospace Sciences, 2019, 108:32-120. [6] Huang P F, Lu Y B, Wang M, et al. Postcapture attitude takeover control of a partially failed spacecraft with parametric uncertainties[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(2):919-930. [7] Huang P F, Wang M, Meng Z J, et al. Attitude coordinated control for docked spacecraft based on estimated coupling torque[J]. Journal of Aerospace Engineering, 2016, 29(6). DOI:10.1061/(ASCE)AS.1943-5525.0000645. [8] 王明, 黄攀峰, 孟中杰, 等. 空间机器人抓捕目标后姿态接管控制[J]. 航空学报, 2015, 36(9):3165-3175. Wang M, Huang P F, Meng Z J, et al. Attitude takeover control after capture of target by a space robot[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):3165-3175. [9] Ohakmi Y, Kawano I. Autonomous rendezvous and docking by engineering test satellite ⅤⅡ:A challenge of Japan in guidance, navigation and control-Breakwell memorial lecture[J]. Acta Astronautica, 2003, 53(1):1-8. [10] Stamm S, Motaghedi P. Orbital Express capture system:Concept to reality[C]//Proceedings of the SPIE, Vol. 5419. Bellingham, USA:SPIE, 2004. DOI:10.1117/12.544569. [11] Rupp T, Boge T, Kiehling R, et al. Flight dynamics challenges of the German on-orbit servicing mission DEOS[C]//21st International Symposium on Space Flight Dynamics. Toulouse, France:GAAT, 2009. [12] Kaiser C, Sjoberg F, Delcura J M, et al. SMART-OLEV-An orbital life extension vehicle for servicing commercial spacecrafts in GEO[J]. Acta Astronautica, 2008, 63(1-4):400-410. [13] Debus T Z, Dougherty S P. Overview and performance of the front-end robotics enabling near-term demonstration (FREND) robotic arm[C]//AIAA Infotech@Aerospace Conference. Reston, USA:AIAA, 2009. DOI:10.2514/6.2009-1870. [14] Huang P F, Wang M, Meng Z J, et al. Reconfigurable spacecraft attitude takeover control in post-capture of target by space manipulators[J]. Journal of the Franklin Institute, 2016, 353(9):1985-2008. [15] Huang P F, Wang M, Meng Z J, et al. Attitude takeover control for post-capture of target spacecraft using space robot[J]. Aerospace Science and Technology, 2016, 51:171-180. [16] 王明, 黄攀峰, 常海涛, 等. 基于机械臂耦合力矩评估的组合航天器姿态协调控制[J]. 机器人, 2015, 37(1):25-34. Wang M, Huang P F, Chang H T, et al. Coordinated attitude control of combined spacecraft based on estimated coupling torque of manipulator[J]. Robot, 2015, 37(1):25-34. [17] Xu W F, Meng D S, Liu H D, et al. Singularity-free trajectory planning of free-floating multiarm space robots for keeping the base inertially stabilized[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 49(12):2464-2477. [18] Xu W F, Hu Z H, Yan L, et al. Modeling and planning of a space robot for capturing tumbling target by approaching the dynamic closest point[J]. Multibody System Dynamics, 2019, 47:203-241. [19] Xu W F, Peng J Q, Liang B, et al. Hybrid modeling and analysis method for dynamic coupling of space robots[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(1):85-98. [20] Yan L, Xu W F, Hu Z H, et al. Multi-objective configuration optimization for coordinated capture of dual-arm space robot[J]. Acta Astronautica, 2020, 167:189-200. [21] 陈钢, 贾庆轩, 孙汉旭, 等. 空间机器人目标捕获过程中碰撞运动分析[J]. 机器人, 2010, 32(3):432-438. Chen G, Jia Q X, Sun H X, et al. Analysis on impact motion of space robot in the object capturing process[J]. Robot, 2010, 32(3):432-438. [22] 谢冉, 孔祥龙, 师鹏, 等. 空间机器人目标捕获过程的碰撞冲击分析[J]. 计算机仿真, 2016, 33(2):438-442. Xie R, Kong X L, Shi P, et al. Impact analysis of space manipulators during target capture[J]. Computer Simulation, 2016, 33(2):438-442. [23] 魏承, 赵阳, 田浩. 空间机器人捕获漂浮目标的抓取控制[J]. 航空学报, 2010, 31(3):632-637. Wei C, Zhao Y, Tian H. Grasping control of space robot for capturing floating target[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3):632-637. [24] 吕跃勇, 秦堂皓, 张薇, 等. 基于超螺旋干扰观测器的组合体航天器姿态接管控制[J]. 无人系统技术, 2020, 3(5):39-45. Lü Y Y, Qin T H, Zhang W, et al. Attitude takeover of combined spacecraft based on super-twisting disturbance observer[J]. Unmanned Systems Technology, 2020, 3(5):39-45. [25] 艾海平, 陈力. 空间机器人捕获航天器操作的避撞柔顺无源神经网络H∞控制[J]. 光学精密工程, 2020, 28(3):717-726. Ai H P, Chen L. Passivity-based neural network H∞ avoidance compliant control of space robot capturing spacecraft[J]. Optics and Precision Engineering, 2020, 28(3):717-726. [26] 陈志勇, 陈力. 带有柔性补偿的柔性关节空间机器人的增广自适应控制及关节振动抑制[J]. 宇航学报, 2013, 34(12):1599-1604. Chen Z Y, Chen L. Augmented adaptive control and joint vibration suppression for flexible-joint space robot with flexibility compensation[J]. Journal of Astronautics, 2013, 34(12):1599-1604. [27] Yu X Y, Chen L. Modeling and observer-based augmented adaptive control of flexible-joint free-floating space manipulators[J]. Acta Astronautica, 2015, 108:146-155. [28] 韦文书, 荆武兴, 高长生. 捕获非合作目标后航天器的自主稳定技术研究[J]. 航空学报, 2013, 34(7):1520-1530. Wei W S, Jing W X, Gao C S. Research automatic stability technology of spacecraft assembly with captured noncooperative targets on orbit[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1520-1530. [29] 倪智宇, 刘金国, 畅晨光. 基于子空间方法的柔性空间机械臂未知末端载荷质量参数辨识[J]. 机械工程学报, 2018, 54(14):132-140. Ni Z Y, Liu J G, Chang C G. Identification of unknown endpoint payload mass parameter of flexible space manipulator based on subspace method[J]. Journal of Mechanical Engineering, 2018, 54(14):132-140. [30] Aghili F. Optimal control of a space manipulator for detumbling of a target satellite[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2009:3019-3024. [31] Aghili F. Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2009:2365-2372. [32] 韩冬, 黄攀峰, 刘正雄, 等. 空间自旋目标混合EFIR/DFT运动轨迹预测算法[J]. 宇航学报, 2017, 38(8):804-812. Han D, Huang P F, Liu Z X, et al. A hybrid EFIR/DFT algorithm on trajectory prediction of space spinning target[J]. Journal of Astronautics, 2017, 38(8):804-812. [33] 李梁, 李剑飞, 张大伟, 等. 自由漂浮空间双臂机器人动目标抓捕控制[J]. 北京理工大学学报, 2019, 39(6):615-623. Li L, Li J F, Zhang D W, et al. Control of free-floating space dual-arm robot for capturing moving targets[J]. Transactions of Beijing Institute of Technology, 2019, 39(6):615-623. [34] Dimitrov D N, Yoshida K. Utilization of the bias momentum approach for capturing a tumbling satellite[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2004:3333-3338. [35] Dimitrov D. Dynamics and control of space manipulators during a satellite capturing operation[D]. Sendai, Japan:Tohoku University, 2006. [36] Dimitrov D N, Yoshida K. Momentum distribution in a space manipulator for facilitating the post-impact control[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2004:3345-3350. [37] Dimitrov D N, Yoshida K. Utilization of distributed momentum control for planning approaching trajectories of a space manipulator to a target satellite[C]//8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. Paris, France:ESA, 2005:157-164. [38] Nishida S I, Kawamoto S. Strategy for capturing of a tumbling space debris[J]. Acta Astronautica, 2011, 68(1-2):113-120. [39] 吴昊, 孙晟昕, 魏承, 等. 基于机器人柔性毛刷的空间翻滚目标消旋[J]. 航空学报, 2019, 40(5):278-286. Wu H, Sun S X, Wei C, et al. Tumbling target despun based on robotic flexible brush[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5):278-286. [40] Matunaga S, Kanzawa T, Ohkami Y. Rotational motiondamper for the capture of an uncontrolled floating satellite[J]. Control Engineering Practice, 2001, 9(2):199-205. [41] Chen G, Wang Y Q, W Y F, et al. Detumbling strategy based on friction control of dual-arm space robot for capturing tumbling target[J]. Chinese Journal of Aeronautics, 2020, 33(3):1093-1106. [42] Liu Y Q, Yu Z W, Liu X F, et al. Active detumbling technology for high dynamic non-cooperative space targets[J]. Multibody System Dynamics, 2019, 47:21-41. [43] 王明明, 罗建军, 余敏, 等. 冗余空间机械臂抓捕自旋卫星后的消旋控制[J]. 宇航学报, 2018, 39(5):550-561. Wang M M, Luo J J, Yu M, et al. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite[J]. Journal of Astronautics, 2018, 39(5):550-561. [44] Wang M M, Luo J J, Yuan J P, et al. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite[J]. Acta Astronautica, 2017, 141:98-109. [45] Flores-Abad A, Wei Z, Ma O, et al. Optimal control of space robots for capturing a tumbling object with uncertainties[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):2014-2017. [46] Flores-Abad A, Zhang L, Wei Z, et al. Optimal capture of a tumbling object in orbit using a space manipulator[J]. Journal of Intelligent & Robotic Systems, 2017, 86:199-211. [47] Zhang B, Liang B, Wang Z W, et al. Coordinated stabilization for space robot after capturing a noncooperative target with large inertia[J]. Acta Astronautica, 2017, 134:75-84. [48] 常海涛, 黄攀峰, 王明, 等. 空间细胞机器人接管控制的分布式控制分配[J]. 航空学报, 2016, 37(9):2864-2873. Chang H T, Huang P F, Wang M, et al. Distributed control allocation for cellular space robots in takeover control[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2864-2873. [49] Tanaka H, Yamamoto N, Yairi T, et al. Reconfigurable cellular satellites maintained by space robots[J]. Journal of Robotics and Mechatronics, 2006, 18(3):356-364. [50] Thiemann T. The Phoenix Project:Master constraint programme for loop quantum gravity[J]. Classical and Quantum Gravity, 2006, 23(7). DOI:10.1088/0264-9381/23/7/002. [51] Goeller M, Oberlaender J, Uhl K, et al. Modular robots for on-orbit satellite servicing[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2012:2018-2023. [52] Chang H T, Huang P F, Lu Z Y, et al. Cellular space robot and its interactive model identification for spacecraft takeover control[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2016:3069-3074. [53] Chang H T, Huang P F, Zhang Y Z, et al. Distributed control allocation for spacecraft attitude takeover control via cellular space robot[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(11):2495-2502. [54] 黄攀峰, 常海涛, 鹿振宇, 等. 面向在轨服务的可重构细胞卫星关键技术与展望[J]. 宇航学报, 2016, 37(1):1-10. Huang P F, Chang H T, Lu Z Y, et al. Key techniques of onorbit service-oriented reconfigurable cellularized satellite and its prospects[J]. Journal of Astronautics, 2016, 37(1):1-10. [55] Sullivan B, Barnhart D, Hill L, et al. DARPA Phoenix payload orbital delivery system (PODs):"FedEx to GEO"[C]//AIAA SPACE Conference and Exposition. Reston, USA:AIAA, 2013. DOI:10.2514/6.2013-5484. [56] 田嘉旭. 基于细胞卫星的航天器姿态接管控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2019. Tian J X. Spacecraft attittude takeover control via cellular satellites[D]. Harbin:Harbin Institute of Technology, 2019. [57] 韩楠, 罗建军, 马卫华. 失效卫星姿态接管的并行学习合作博弈控制[J]. 航空学报, 2021, 42(3):382-392. Han N, Luo J J, Ma W H. Concurrent learning cooperative game control for attitude takeover of failed satellites[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3):382-392. [58] Han N, Luo J J, Zheng Z X, et al. Distributed cooperative game method for attitude takeover of failed satellites using nanosatellites[J]. Aerospace Science and Technology, 2020, 106. DOI:10.1016/j.ast.2020.106151. [59] 常海涛, 黄攀峰, 鹿振宇, 等. 空间细胞机器人接管非合作目标时的交互式参数辨识方法[J]. 机器人, 2017, 39(2):129-138. Chang H T, Huang P F, Lu Z Y, et al. Interactive parameter identification of cellular space robots for non-cooperative spacecraft takeover control[J]. Robot, 2017, 39(2):129-138. [60] 刘姝. 基于细胞星的整星质量特性辨识与细胞星安装位姿确定[D]. 哈尔滨:哈尔滨工业大学, 2019. Liu S. Identification of the whole star quality characteristics based on cell stars and determination of position and posture of cell star installation[D]. Harbin:Harbin Institute of Technology, 2019. [61] Tsiolkovsky K. Dreams of earth and sky[M]. Christchurch, New Zealand:Athenabooks, 2004. [62] Bischof B, Kerstein L, Starke J, et al. Roger-Robotic geostationary orbit restorer[C]//54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Reston, USA:AIAA, 2003. DOI:10.2514/6.IAC-03-IAA.5.2.08. [63] Shan M. Net deployment and contact dynamics of capturing space debris objects[D]. Delft, Netherlands:Delft University of Technology, 2018. [64] Aleina S C, Viola N, Stesina F, et al. Reusable space tug concept and mission[J]. Acta Astronautica, 2016, 128:21-32. [65] Aslanov V S, Yudintsev V V. Dynamics of large debris connected to space tug by a tether[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(6):1654-1660. [66] Aslanov V, Yudintsev V. Dynamics of large space debris removal using tethered space tug[J]. Acta Astronautica, 2013, 91:149-156. [67] Aslanov V S, Yudintsev V V. The motion of tethered tug-debris system with fuel residuals[J]. Advances in Space Research, 2015, 56(7):1493-1501. [68] Sun L, Zhao G W, Huang H. Effect of mass variation on dynamics of tethered system in orbital maneuvering[J]. Acta Astronautica, 2018, 146:15-23. [69] 刘贺龙, 何英姿, 谈树萍. 带偏置点的绳系拖拽离轨系统动力学研究[J]. 空间控制技术与应用, 2017, 43(1):42-48. Liu H L, He Y Z, Tan S P. Dynamics of tether tugging deorbiting system in the presence of offset[J]. Aerospace Control and Application, 2017, 43(1):42-48. [70] Kang J J, Zhu Z H. De-spin of massive rotating space object by tethered space tug[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(11):2463-2469. [71] Kang J J, Zhu J H, Wei W, et al. Dynamics and de-spin control of massive target by single tethered space tug[J]. Chinese Journal of Aeronautics, 2019, 32(3):653-659. [72] Qi R, Misra A K, Zuo Z Y. Active debris removal using doubletethered space-tug system[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(3):722-730. [73] Wen H, Zhu Z H, Jin D P, et al. Constrained tension control of a tethered space-tug system with only length measurement[J]. Acta Astronautica, 2016, 119:110-117. [74] Zhang J R, Yang K Y, Qi R. Dynamics and offset control of tethered space-tug system[J]. Acta Astronautica, 2018, 142:232-252. [75] Zhong R, Xu S J. Neural-network-based terminal sliding-mode control for thrust regulation of a tethered space-tug[J]. Astrodynamics, 2018, 2:175-185. [76] Zhang Z P, Yu Z W, Zhang Q W, et al. Dynamics and control of a tethered space-tug system using Takagi-Sugeno fuzzy methods[J]. Aerospace Science and Technology, 2019, 87:289-299. [77] 张倩文. 绳系拖车在轨稳定及目标离轨控制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2019. Zhang Q W. Research on on-orbit stability control and deorbiting method for tethered space-tug system[D]. Harbin:Harbin Institute of Technology, 2019. [78] Meng Z J, Wang B H, Huang P F. Twist suppression method of tethered towing for spinning space debris[J]. Journal of Aerospace Engineering, 2017, 30(4). DOI:10.1061/(ASCE)AS.1943-5525.0000708. [79] Zhao G W, Sun L, Huang H, et al. Optimal attitude control of a tethered system for noncoplanar orbital transfer under a constant thrust[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(3):1844-1855. [80] Huang P F, Zhang F, Cai J, et al. Dexterous tethered space robot:Design, measurement, control, and experiment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3):1452-1468. [81] Huang P F, Meng Z J, Guo J, et al. Tethered space robot:Dynamics, measurement, and control[M]. New York, USA:Academic Press, 2018. [82] Chen L, Huang P F, Cai J, et al. A non-cooperative target grasping position prediction model for tethered space robot[J]. Aerospace Science and Technology, 2016, 58:571-581. [83] Chen L, Huang P F, Cai J. Extracting and matching lines of low-textured region in close-range navigation for tethered space robot[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9):7131-7140. [84] Huang P F, Wang D K, Meng Z J, et al. Impact dynamic modeling and adaptive target capturing control for tethered space robots with uncertainties[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5):2260-2271. [85] Lu Y B, Huang P F, Meng Z J, et al. Finite time attitude takeover control for combination via tethered space robot[J]. Acta Astronautica, 2017, 136:9-21. [86] Lu Y B, Huang P F, Meng Z J. Adaptive neural network dynamic surface control of the post-capture tethered spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2):1406-1419. [87] Wang D K, Huang P F, Meng Z J. Coordinated stabilization of tumbling targets using tethered space manipulators[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2420-2432. [88] Huang P F, Wang D K, Meng Z J, et al. Adaptive postcapture backstepping control for tumbling tethered space robot-target combination[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(1):150-156. [89] 孟中杰, 黄攀峰, 鲁迎波, 等. 在轨服务中空间系绳的应用及发展[J]. 宇航学报, 2019, 40(10):1134-1145. Meng Z J, Huang P F, Lu Y B, et al. Applications and development of space tether in on-orbit servicing[J]. Journal of Astronautics, 2019, 40(10):1134-1145. [90] 孟中杰, 黄攀峰. 自主机动飞网机器人动力学建模与网型保持方法[J]. 宇航学报, 2015, 36(7):755-762. Meng Z J, Huang P F. Dynamics modeling and shape keeping of the maneuverable net robot[J]. Journal of Astronautics, 2015, 36(7):755-762. [91] 张帆. 空间飞网机器人释放动力学与控制方法研究[D]. 西安:西北工业大学, 2017. Zhang F. Releasing dynamics and control of tethered space net robot[D]. Xi'an:Northwestern Polytechnical University, 2017. [92] 马骏, 黄攀峰, 胡仄虹, 等. 空间飞网机器人网型保持控制方法研究[J]. 西北工业大学学报, 2013, 31(6):908-914. Ma J, Huang P F, Hu Z H, et al. A maneuvering-net space robot's maneuvering-net maintenance and control strategy[J]. Journal of Northwestern Polytechnical University, 2013, 31(6):908-914. [93] 翟光, 梁斌, 李成. 空间飞网捕获机器人交会轨迹规划研究[J]. 哈尔滨工业大学学报, 2010, 42(9). DOI:10.11918/j.issn.0367-6234.2010.09.003. Zhai G, Liang B, Li C. Proximity trajectory planning for net-based space robotic system[J]. Journal of Harbin Institute of Technology, 2010, 42(9). DOI:10.11918/j.issn.0367-6234.2010.09.003. [94] Botta E M, Sharf I, Misra A K, et al. On the simulation of tether-nets for space debris capture with Vortex Dynamics[J]. Acta Astronautica, 2016, 123:91-102. [95] Botta E M, Sharf I, Misra A K. Contact dynamics modeling and simulation of tether nets for space-debris capture[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(1). DOI:10.2514/1.G000677. [96] Botta E M, Sharf I, Misra A K. Evaluation of net capture of space debris in multiple mission scenarios[C]//26th AAS/AIAA Space Flight Mechanics Meeting. Reston, USA:AIAA, 2016. [97] Sharf I, Thomsen B, Botta E M, et al. Experiments and simulation of a net closing mechanism for tether-net capture of space debris[J]. Acta Astronautica, 2017, 139:332-343. [98] Shan M H, Guo J, Gill E. Deployment dynamics of tetherednet for space debris removal[J]. Acta Astronautica, 2017, 132:293-302. [99] O'Connor W J, Hayden D J. Detumbling of space debris by a net and elastic tether[J]. Journal of Guidance, Control, and Dynamics, 2017, 40(7):1829-1833. [100] Peters T V, Olmos D E. COBRA contactless detumbling[J]. CEAS Space Journal, 2016, 8:143-165. [101] Bennett T, Stevenson D, Hogan E, et al. Prospects and challenges of touchless electrostatic detumbling of small bodies[J]. Advances in Space Research, 2015, 56(3):557-568. [102] Sugai F, Abiko S, Tsujita T, et al. Development of an eddy current brake system for detumbling malfunctioning satellites[C]//IEEE/SICE International Symposium on System Integration. Piscataway, USA:IEEE, 2012:325-330. [103] Estable S, Pruvost C, Ferreira E, et al. Capturing and deorbiting Envisat with an Airbus Spacetug. Results from the ESA e. Deorbit consolidation phase study[J]. Journal of Space Safety Engineering, 2020, 7(1):52-66. [104] Jankovic M, Kumar K, Ortiz N, et al. Spacecraft concept for active de-tumbling and robotic capture of Ariane rocket bodies[C]//13th Symposium on Advanced Space Technologies in Robotics and Automation. Paris, France:ESA, 2015. DOI:10.13140/RG.2.1.1708.2487. [105] Olmos E D. COBRA executive summary:COBRA extension of IRIDES experiment[EB/OL]. (2014-07-07)[2021-11-08]. https://nebula.esa.int/sites/default/files/neb_study/1188/C4000110632ExS.pdf. [106] Peters T V, Pellacani A, Attina P, et al. COBRA active debris removal concept[C]//64th International Astronautical Congress. 2013:2329-2341. [107] Ferrari F, Benvenuto R, Lavagna M. Gas plume impingemen t technique for space debris de-tumbling[C]//9th International ESA Conference on Guidance, Navigation and Control Systems. Paris, France:ESA, 2014. [108] Peters T V, Olmos E D, Pellacani A, et al. The CO BRA IRIDES experiment[C]//65th International Astronautical Congress. 2014:1601-1611. [109] Nakajima Y, Mitani S, Tani H, et al. Detumbling space debris via thruster plume impingement[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston, USA:AIAA, 2016. DOI:10.2514/6.2016-5660. [110] 姜力维. 基于空间机器人的非合作目标气体冲击消旋研究[D]. 长沙:国防科技大学, 2017. Jiang L W. Research on non-cooperative target detumbling by gas plume impingement based on space robot[D]. Changsha:National University of Defense Technology, 2017. [111] Liu Y Q, Pan Y, Li Q. A research on strategy of plume impingement de-tumbling technology[C]//Chinese Control and Decision Conference. Piscataway, USA:IEEE, 2018:4539-4544. [112] 马广富, 郭延宁, 邱爽, 等. 空间非合作目标消旋技术研究现状总结与展望[J]. 飞控与探测, 2018, 1(1):26-33. Ma G F, Guo Y N, Qiu S, et al. Summary and prospect of detumbling methods of space noncooperative targets[J]. Flight Control & Detection, 2018, 1(1):26-33. [113] 赵一鸣. 基于库仑力的非接触式目标消旋研究[D]. 哈尔滨:哈尔滨工业大学, 2016. Zhao Y M. Research on non-contact attitude control based on the Coulomb force[D]. Harbin:Harbin Institute of Technology, 2016. [114] Cover J R J H, Knauer W, Maurer H A. Lightweight reflecting structures utilizing electrostatic inflation:US3546706A[P]. 1970-12-08. [115] King L B, Parker G G, Deshmukh S, et al. Study of interspacecraft Coulomb forces and implications for formation flying[J]. Journal of Propulsion and Power, 2003, 19(3):497-505. [116] Schaub H, Parker G G, King L B. Challenges and prospects of Coulomb spacecraft formation control[J]. The Journal of the Astronautical Sciences, 2004, 52:169-193. [117] Stevenson D, Schaub H. Multi-sphere method for modeling spacecraft electrostatic forces and torques[J]. Advances in Space Research, 2013, 51(1):10-20. [118] Schaub, H, Stevenson D. Prospects of relative attitude control using Coulomb actuation[J]. The Journal of the Astronautical Sciences, 2013, 60:258-277. [119] Bennett T, Chaub H. Touchless electrostatic three-dimensional detumbling of large axi-symmetric debris[J]. The Journal of the Astronautical Sciences, 2015, 62:233-253. [120] Bennett T, Schaub H. Contactless electrostatic detumbling of axi-symmetric GEO objects with nominal pushing or pulling[J]. Advances in Space Research, 2018, 62(11):2977-2987. [121] Stevenson D, Schaub H. Electrostatic spacecraft rate and attitude control-experimental results and performance considerations[J]. Acta Astronautica, 2016, 119:22-33. [122] Reinhardt B, Peck M A. Eddy-current space tug[C]//AIAA SPACE Conference and Exposition. Reston, USA:AIAA, 2011. DOI:10.2514/6.2011-7168. [123] Kadaba P K, Naishadham K. Feasibility of noncontacting electromagnetic despinning of a satellite by inducing eddy currents in its skin. I. Analytical considerations[J]. IEEE Transactions on Magnetics, 1995, 31(4):2471-2477. [124] Sugai F, Abiko S, Tsujita T, et al. Detumbling an uncontrolled satellite with contactless force by using an eddy current brake[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:783-788. [125] Praly N, Hillion M, Bonnal C, et al. Study on the eddy current damping of the spin dynamics of space debris from the Ariane launcher upper stages[J]. Acta Astronautica, 2012, 76:145-153. [126] Gómez N O, Walker S J I. Earth's gravity gradient and eddy currents effects on the rotational dynamics of space debris objects:Envisat case study[J]. Advances in Space Research, 2015, 56(3):494-508. [127] Gómez N O, Walker S J I, Jankovic M, et al. Control analysis for a contactless de-tumbling method based on eddy currents:Problem definition and approximate proposed solutions[C]//AIAA Guidance, Navigation, and Control Conference. Reston, USA:AIAA, 2016. DOI:10.2514/6.2016-0642. [128] 石永康, 杨乐平, 朱彦伟, 等. 空间旋转目标涡流消旋概念与仿真分析[J]. 宇航学报, 2018, 39(10):1089-1096. Shi Y K, Yang L P, Zhu Y W, et al. Modeling and simulation of superconducting eddy brake concept for space tumbling object[J]. Journal of Astronautics, 2018, 39(10):1089-1096. [129] Liu X G, Lu Y, Zhou Y, et al. Prospects of using a permanent magnetic end effector to despin and detumble an uncooperative target[J]. Advances in Space Research, 2018, 61(8):2147-2158. [130] Liu X G, Lu Y, Zhang Q, et al. An application of eddy current effect on the active detumbling of uncontrolled satellite with tilt air gap[J]. IEEE Transactions on Magnetics, 2019, 55(12):1-11. [131] Li H Y, Li J Y, Jiang F H. Dynamics and control for contactless interaction between spacecraft and tumbling debris[J]. Advances in Space Research, 2018, 61(1):154-166. [132] Lin H Y, Zhao C Y. Approximate expressions of mean eddy current torque acted on space debris[J]. Astrophysics and Space Science, 2017, 362. DOI:10.1007/s10509-017-3012-4. [133] Lin H Y, Zhao C Y. Evolution of the rotational motion of space debris acted upon by eddy current torque[J]. Astrophysics and Space Science, 2015, 357. DOI:10.1007/s10509-015-2396-2.