Design and Experiment of Modular Hyper-redundant Space Manipulator
LI Yanhui1,2, HUO Qi1,2, LI Ang1,2, HE Shuai1,2, ZHANG Enyang1,2,3, SAI Huayang1,2,3, ZHU Mingchao1,2, XU Zhengbang1,2
1. Chinese Academy of Sciences Key Laboratory of On-orbit Manufacturing and Integration for Space Optics System, Changchun 130033, China; 2. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:A modular hyper-redundant space manipulator with 9-DOF (degree-of-freedom) is designed for the requirements of space on-orbit service tasks. The designed manipulator is composed of 9 identical manipulator joints, and the number of joints can be adjusted according to the task requirements. The modular joint is of an integrated design, and the mechanical transmission part and electrical part are reasonably arranged in the joint. Based on the improved Bi-RRT (bidirectional rapidly-exploring random tree) algorithm and the established forward and inverse kinematics models of the manipulator, the simulation and experiment of the manipulator crossing the complex obstacle environment are carried out. The experimental results show that the designed manipulator can cross the obstacle environment flexibly. Based on the impedance control algorithm, the writing experiment and the constant force holding experiment are carried out with the manipulator, respectively. The experimental results show that the manipulator has a good force control ability. The above experiments verify that the designed manipulator has the ability to perform on-orbit service in the complex space environment.
[1] Flores-Abad A, Ma O, Pham K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26. [2] Diftler M A, Mehling J, Abdallah M E, et al. Robonaut 2-The first humanoid robot in space[C]//IEEE International Con ference on Robotics and Automation. Piscataway, USA:IEEE, 2010:2178-2183. [3] Kimura S, Takahashi M, Okuyama T, et al. A fault-tolerant control algorithm having a decentralized autonomous architecture for space hyper-redundant manipulators[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part A:Systems and Humans, 1998, 28(4):521-527. [4] Chirikjian G S, Burdick J W. A hyper-redundant manipulator[J]. IEEE Robotics & Automation Magazine, 1994, 1(4):22-29. [5] Wright C, Buchan A, Brown B, et al. Design and architecture of the unified modular snake robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:4347-4354. [6] School of Computer Science, Carnegie Mellon University. CMU's snakebot goes for a swim[EB/OL]. (2021-04-13)[2021-06-10]. https://www.scs.cmu.edu/news/2021/cmus-snakebot-goesswim. [7] Wu E C, Hwang J C. Fault-tolerant joint development for the space shuttle remote manipulator system:Analysis and experiment[J]. IEEE Transactions on Robotics and Automation, 1993, 9(5):675-684. [8] Crane C D Ⅲ, Duffy J, Carnahan T. A kinematic analysis of the space station remote manipulator system[J]. Journal of Robotic Systems, 1991, 8(5):637-658. [9] Ou M, Wang J, Misra S, et al. On the validation of SPDM task verification facility[J]. Journal of Robotic Systems, 2004, 21(5):219-235. [10] Matsueda T, Kuraoka K, Goma K, et al. JEMRMS system design and development status[C]//National Telesystems Conference. Piscataway, USA:IEEE, 2002:391-395. [11] Boumans R, Heemskerk C. The European robotic arm for the International Space Station[J]. Robotics and Autonomous Systems, 1998, 23(1/2):17-27. [12] 刘宏, 蒋再男, 刘业超. 空间机械臂技术发展综述[J]. 载人航天, 2015, 21(5):435-443. Liu H, Jiang Z N, Liu Y C. Review of space manipulator technology[J]. Manned Spaceflight, 2015, 21(5):435-443. [13] Rupp T, Boge T, Kiehling R, et al. Flight dynamics challenges of the German on-orbit servicing mission DEOS[C]//21st International Symposium on Space Flight Dynamics. Toulouse, France:German Aerospace Agency Toulouse, 2009. [14] Piskorz D. On-orbit assembly of space assets:A path to affordable and adaptable space infrastructure[DB/OL]. (2018-05-05)[2021-06-10]. http://aerospace.wpengine.netdna-cdn.com/wpcontent/uploads/2018/02/OnOrbitAssembly.pdf. [15] Kennedy B, Okon A, Aghazarian H, et al. Lemur Ⅱb:A robotic system for steep terrain access[J]. Industrial Robot, 2005, 33(4):265-269. [16] Jiang H, Wang Z, Jin Y, et al. Hierarchical control of soft manipulators towards unstructured interactions[J]. International Journal of Robotics Research, 2021, 40(1):411-434. [17] Tang L, Zhu L M, Zhu X Y, et al. Confined spaces path following for cable-driven snake robots with prediction lookup and interpolation algorithms[J]. Science China:Technological Sciences, 2020, 63(2):255-264. [18] Tang L, Wang J, Zheng Y, et al. Design of a cable-driven hyperredundant robot with experimental validation[J]. International Journal of Advanced Robotic Systems, 2017, 14(5). DOI:10.1177/1729881417734458. [19] 李冰玉, 阚子云, 彭海军, 等. 基于张拉整体结构的连续型弯曲机械臂设计与研究[J]. 机器人, 2020, 42(6):48-58. Li B Y, Kan Z Y, Peng H J, et al. Design and research on a continuum manipulator based on tensegrity structure[J]. Robot, 2020, 42(6):48-58. [20] Transeth A A, Leine R I, Glocker C, et al. 3-D snake robot motion:Nonsmooth modeling, simulations, and experiments[J]. IEEE Transactions on Robotics, 2008, 24(2):361-376. [21] Transeth A A, Leine R I, Glocker C, et al. Snake robot obstacleaided locomotion:Modeling, simulations, and experiments[J]. IEEE Transactions on Robotics, 2008, 24(1):88-104. [22] Wright C, Buchan A, Brown B, et al. Design and architecture of the unified modular snake robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:4347-4354. [23] Mu Z G, Wang H M, Xu W F, et al. Two types of snake-like robots for complex environment exploration:Design, development, and experiment[J]. Advances in Mechanical Engineering, 2017, 9(9). DOI:10.1177/1687814017721854. [24] Gallardo J, Orozco H, Rico J M, et al. A new spatial hyperredundant manipulator[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(4/5):703-708. [25] Zhao Y, Lei J, Peng Z, et al. Inverse displacement analysis of a hyper-redundant elephant's trunk robot[J]. Journal of Bionic Engineering, 2018, 15:397-407. [26] Zhao Y, Song X, Zhang X, et al. A hyper-redundant elephant's trunk robot with an open structure:Design, kinematics, control and prototype[J]. Chinese Journal of Mechanical Engineering, 2020, 33(6). DOI:10.1186/s10033-020-00509-4. [27] Hu B, Wang Y, Yu J J, et al. Solving kinematics and stiffness of a novel n(2-UPS/PS+RPS) spatial hyper-redundant manipulator[J]. Robotica, 2016, 34(10):2386-2399. [28] Hu B, Cui H, Shi D S, et al. Reachable workspace determination for a spatial hyper-redundant manipulator formed by several parallel manipulators[J]. Journal of Mechanical Science and Technology, 2019, 33(2):869-877. [29] Taherifar A, Salarieh H, Alasty A. Kinematic control of a new hyper-redundant manipulator with lockable joints[J]. Scientia Iranica, 2013, 20(6):1742-1752. [30] Xu X S, Ananthanarayanan H, Ordonez R. Design and construction of 9-DOF hyper-redundant robotic arm[C]//IEEE Aerospace and Electronics Conference. Piscataway, USA:IEEE, 2013:321-326. [31] 何俊培, 徐振邦, 于阳, 等. 九自由度超冗余机械臂的设计和测试[J]. 光学精密工程, 2017, 25(12z):80-86. He J P, Xu Z B, Yu Y, et al. Design and experimental testing of a 9-DOF hyper-redundant robotic arm[J]. Optics and Precision Engineering, 2017, 25(12z):80-86. [32] Chang J W, Wang W, Kim M S. Efficient collision detection using a dual OBB-sphere bounding volume hierarchy[J]. Computer-Aided Design, 2010, 42(1):50-57. [33] 甘亚辉, 段晋军, 戴先中. 非结构环境下的机器人自适应变阻抗力跟踪控制方法[J]. 控制与决策, 2019(10):2134-2142. Gan Y H, Duan J J, Dai X Z. Robot adaptive variable impedance force tracking control method in unstructured environment[J]. Control and Decision, 2019(10):2134-2142.