Design and Kinematics Analysis of a Three-finger Manipulator with Kresling and Miura Hybrid Origami Crease
YANG Hui1,2, WANG Xiang1, QIAO Shangling2, LIU Rongqiang2
1. School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China; 2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
杨慧, 汪祥, 乔尚岭, 刘荣强. Kresling和Miura折痕混合型三指机械手的运动学分析及其设计[J]. 机器人, 2022, 44(1): 35-44.DOI: 10.13973/j.cnki.robot.210197.
YANG Hui, WANG Xiang, QIAO Shangling, LIU Rongqiang. Design and Kinematics Analysis of a Three-finger Manipulator with Kresling and Miura Hybrid Origami Crease. ROBOT, 2022, 44(1): 35-44. DOI: 10.13973/j.cnki.robot.210197.
Abstract:A three-finger manipulator with a Kresling and Miura hybrid origami crease is proposed, which has large grasping range, simple structure and high flexibility. Firstly, geometrical analysis on the Kresling origami crease is performed, and the relation equation between the parameters and the strain energy of the Kresling origami crease is established. The equation between the moment and the knuckle length-width ratio of the multilayer Miura origami element is established by the coordinate method. Then, the mathematical model of the relationship among the parameters of the hybrid element is established by using the principle of virtual work, and the distribution of the end points is calculated by using the D-H (Denavit-Hartenberg) coordinate method to determine the workspace of the manipulator. The method of torque balance is used to analyze the situations that the manipulator grasps the cylinder and cuboid objects in fingertip manner and in envelope manner respectively, and the relation between the contact forces and the joint angles is derived.
[1] Tachi T. Origamizing polyhedral surfaces[J]. IEEE Transactions on Visualization and Computer Graphics, 2010, 16(2):298-311. [2] Wu W N, You Z. Modelling rigid origami with quaternions and dual quaternions[J]. Proceedings of the Royal Society, A:Mathematical, Physical and Engineering Sciences, 2010, 466(2119):2155-2174. [3] Zhang Q, Wommer J, O'Rourke C, et al. Origami and kirigami inspired self-folding for programming three-dimensional shape shifting of polymer sheets with light[J]. Extreme Mechanics Letters, 2016, 11:111-120. [4] 冯李航, 张为公, 龚宗洋, 等. Delta系列并联机器人研究进展与现状[J]. 机器人, 2014, 36(3):375-384. Feng L H, Zhang W G, Gong Z Y, et al. Developments of Deltalike parallel manipulators-A review[J]. Robot, 2014, 36(3):375-384. [5] 张旭, 郑泽龙, 齐勇. 6自由度串联机器人D-H模型参数辨识及标定[J]. 机器人, 2016, 38(3):360-370. Zhang X, Zheng Z L, Qi Y. Parameter identification and calibration of D-H model for 6-DOF serial robots[J]. Robot, 2016, 38(3):360-370. [6] Chen W H, Misra S, Gao Y C, et al. A programmably compliant origami mechanism for dynamically dexterous robots[J]. IEEE Robotics and Automation Letters, 2020, 5(2):2131-2137. [7] Cai J G, Deng X W, Zhou Y, et al. Bistable behavior of the cylindrical origami structure with Kresling pattern[J]. Journal of Mechanical Design, 2015, 137(6). DOI:10.1115/1.4030158. [8] Al-Mansoori M, Khan K A, Cantwell W J, et al. Harnessing architected stiffeners to manufacture origami-inspired foldable composite structures[J]. Composites Science and Technology, 2020, 200. DOI:10.1016/j.compscitech.2020.108449. [9] Schenk M, Guest S D. Geometry of Miura-folded metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9):3276-3281. [10] Chen Y, Lv W L, Peng R, et al. Mobile assemblies of fourspherical-4R-integrated linkages and the associated four-creaseintegrated rigid origami patterns[J]. Mechanism and Machine Theory, 2019, 142(C). DOI:10.1016/j.mechmachtheory.2019.103613. [11] Cheung K C, Tachi T, Calisch S, et al. Origami interleaved tube cellular materials[J]. Smart Materials and Structures, 2014, 23(9). DOI:10.1088/0964-1726/23/9/094012. [12] Yasuda H, Yang J. Origami-based metamaterials with negative Poisson's ratio and bistability[J]. Physical Review Letters, 2015, 114(18). DOI:10.1103/PhysRevLett.114.185502. [13] Onal C D, Wood R J, Rus D. An origami-inspired approach to worm robots[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(2):430-438. [14] Jeong D, Lee K. Design and analysis of an origami-based threefinger manipulator[J]. Robotica, 2018, 36(2):261-274. [15] Li S G, Vogt D M, Rus D, et al. Fluid-driven origami-inspired artificial muscles[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50):13132-13137. [16] Overvelde J T B, de Jong T A, Shevchenko Y, et al. A threedimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom[J]. Nature Communications, 2016, 7. DOI:10.1038/ncomms10929. [17] Silverberg J L, Na J H, Evans A A, et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom[J]. Nature Materials, 2015, 14(4):389-393. [18] Waitukaitis S, Menaut R, Chen B G G, et al. Origami multistability:From single vertices to metasheets[J]. Physical Review Letters, 2015, 114(5). DOI:10.1103/physrevlett.114.055503. [19] Suh J E, Kim T H, Han J H. New approach to folding a thinwalled Yoshimura patterned cylinder[J]. Journal of Spacecraft and Rockets, 2020, 58(2):516-530. [20] Evans A A, Silverberg J L, Santangelo C D. Lattice mechanics of origami tessellations[J]. Physical Review E:Statistical, Nonlinear, and Soft Matter Physics, 2015, 92(1). DOI:10.1103/PhysRevE.92.013205. [21] 王宁扬, 孙昊, 姜皓, 等. 一种基于蜂巢气动网络的软体夹持器抓取策略研究[J]. 机器人, 2016, 38(3):371-377, 384. Wang N Y, Sun H, Jiang H, et al. On grasp strategy of honeycomb PneuNets soft gripper[J]. Robot, 2016, 38(3):371-377, 384.