Sinkage Mechanism and Extrication Strategy of Mars Rover
PAN Dong1, CHEN Zhen2, YUAN Baofeng1, WANG Rui1, CHEN Baichao1, ZOU Meng2
1. Institute of Spacecraft System Engineering, CAST, Beijing 100094, China; 2. Key Lab for Bionics Engineering of Education Ministry, Jilin University, Changchun 130022, China
Abstract:Taking ZhuRong Mars rover as the research object, the sinkage mechanism of the Mars rover is analyzed based on the theory of vehicle terrainmechanism, and a sinkage determination method is presented based on the slippage ratio, current, sinkage depth and so on. The sinkage determination criteria in different conditions are formulated and the corresponding extrication strategies are proposed for ZhuRong Mars rover. The verification test results show that the slippage ratio is 61.25% and the driving current is 1.9 A in the case of critical sinkage. The rover can't drive away directly when reaching the critical sinkage value, but ZhuRong Mars rover can effectively extricate itself through peristalsis of its active suspension. The research results can provide test data and reference for the in-orbit usage strategy of ZhuRong Mars rover.
[1] Poo M M. Mars exploration on the move[J]. National Science Review, 2020, 7(9):1413. [2] Biswal M M K, Das N B, Annavarapu R N. Orbital and plan etary challenges for human Mars exploration[DB/OL]. (2021-01-12)[2021-06-01]. https://arxiv.org/abs/2101.04725. [3] Chen Y S, Han J J, Fan Y, et al. Overview of the latest scientific results of China's lunar exploration program[J]. Chinese Journal of Space Science, 2020, 40(5):626-642. [4] 司马光. 灵活高效的玉兔号月球车[J]. 国际太空, 2013(12):15-19. Sima G. The flexible and efficient YuTu lunar rover[J]. International Space, 2013(12):15-19. [5] Sebastián E, Martínez G, Ramos M, et al. Thermal calibration of the MEDA-TIRS radiometer onboard NASA's Perseverance rover[J]. Acta Astronautica, 2021, 182:144-159. [6] 王琼, 贾阳, 陶灼, 等. 火星移动智能体技术探讨[J]. 航天器工程, 2015, 24(4):27-32. Wang Q, Jia Y, Tao Z, et al. Discuss on Mars mobile agent technologies[J]. Spacecraft Engineering, 2015, 24(4):27-32. [7] Ding L, Deng Z Q, Gao H B, et al. Planetary rovers' wheelsoil interaction mechanics:New challenges and applications for wheeled mobile robots[J]. Intelligent Service Robotics, 2011, 4(1):17-38. [8] 黄晗, 李建桥, 陈百超, 等. 滑转条件下星球车坡面通过性评估试验[J]. 农业工程学报, 2016, 32(16):40-44. Huang H, Li J Q, Chen B C, et al. Experiment of slope trafficability assessment of planetary rover under slip condition[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16):40-44. [9] Iagnemma K, Senatore C, Trease B P. Terramechanics modeling of Mars surface exploration rovers for simulation and parameter estimation[C]//ASME International Design Engineering Technical Conferences. New York, USA:ASME, 2011:805-812. [10] Johnson J B, Kulchitsky A V, Duvoy P, et al. Discrete element method simulations of Mars Exploration Rover wheel performance[J]. Journal of Terramechanics, 2015, 62:31-40. [11] Heverly M, Matthews J, Lin J, et al. Traverse performance characterization for the Mars Science Laboratory rover[J]. Journal of Field Robotics, 2013, 30(6):835-846. [12] Meirion-Griffith G, Spenko M. A modified pressure-sinkage model for small, rigid wheels on deformable terrains[J]. Journal of Terramechanics, 2011, 48(2):149-155. [13] Lyasko M. Slip sinkage effect in soil-vehicle mechanics[J]. Journal of Terramechanics, 2010, 47(1):21-31. [14] Huang H, Xu S C, Meng Z, et al. The sinkage characteristics and prediction of a planetary rover based on a similarity model experiment[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(10):3762-3774. [15] Richter L, Ellery A, Gao Y, et al. A predictive wheel-soil interaction model for planetary rovers validated in testbeds and against MER Mars rover performance data[C]//European Planetary Science Congress. 2006. [16] Bekker M G. Theory of land locomotion[M]. Ann Arbor, USA:University of Michigan Press, 1956. [17] Wong J Y. Terramechanics and off-road vehicle engineering:Terrain behaviour, off-road vehicle performance and design[M]. 2nd ed. Oxford, UK:Butterworth-Heinemann, 2009.