Abstract:The rehabilitation robot and its clinical applications are reviewed. Information about the rehabilitation robots is summarized from two aspects:motor and cognitive impairments, and some prospects of the development trend for each technology are put forward. Finally, clinical applications of the rehabilitation robot in rehabilitation training are introduced taking clinical rehabilitation of stoke patients for an example, and its development trends are prospected.
[1] 任武,陈秋冰,崔雅静,等.肢体康复机器人研究现状和进展[J].新乡医学报, 2018, 35(8):743-745. Ren W, Chen Q B, Cui Y J, et al. Research status and progress of limb rehabilitation robot[J]. Journal of Xinxiang Medical University, 2018, 35(8):743-745. [2] Lee H, Ferguson P W, Rosen J. Lower limb exoskeleton systems-Overview[M]//Wearable Robotics. New York, USA:Academic Press, 2020:207-229. [3] Vogan A A, Alnajjar F, Gochoo M, et al. Robots, AI, and cognitive training in an era of mass age-related cognitive decline:A systematic review[J]. IEEE Access, 2020, 8:18284-18304. [4] Carr J H, Shepherd R B. A motor relearning programme for stroke[M]. London, UK:Heinemann Physiotherapy, 1987. [5] Goffredo M, Guanziroli E, Pournajaf S, et al. Overground wearable powered exoskeleton for gait training in subacute stroke subjects:Clinical and gait assessments[J]. European Journal of Physical and Rehabilitation Medicine, 2019, 55(6):710-721. [6] 朱霖,田学隆.基于认知再学习疗法的脑卒中康复治疗系统的设计及临床试验[J],中国生物医学工程学报, 2015, 34(6):757-762. Zhu L, Tian X L. Design and clinical experiment of a stroke rehabilitation system based on cognitive relearning therapy[J]. Chinese Journal of Biomedical Engineering, 2015, 34(6):757-762. [7] Lao J W, Chen Y S, Li Z C, et al. A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme[J]. Scientific Reports, 2017, 7. DOI:10.1038/s41598-017-10649-8. [8] Curuk E, Goyal N, Aruin A S. The effect of motor and cognitive tasks on gait in people with stroke[J]. Journal of Stroke and Cerebrovascular Diseases, 2019, 28(11). DOI:10.1016/j. jstrokecerebrovasdis.2019.104330. [9] 王成盼,韩冰雪,罗金维,等.运动康复疗法在脑卒中患者的康复应用现状[J].临床医学进展, 2019, 9(4):390-394. Wang C P, Han B X, Luo J W, et al. Rehabilitation application of exercise rehabilitation therapy in stroke patients[J]. Advances in Clinical Medicine, 2019, 9(4):390-394. [10] Hogan N, Krebs H I, Charnnarong J, et al. MIT-MANUS:A workstation for manual therapy and training. I[C]//IEEE International Workshop on Robot and Human Communication. Piscataway, USA:IEEE, 1992:161-165. [11] Krebs H I, Hogan N, Aisen M L, et al. Robot-aided neurorehabilitation[J]. IEEE Transactions on Rehabilitation Engineering, 1998, 6(1):75-87. [12] Nef T, Mihelj M, Riener R. ARMin:A robot for patientcooperative arm therapy[J]. Medical & Biological Engineering & Computing, 2007, 45:887-900. [13] Tobias N, Marco G, Robert R. ARMin III-Arm therapy exoskeleton with an ergonomic shoulder actuation[J]. Applied Bionics and Biomechanics, 2009, 6(2):127-142. [14] de Oliveira A C, Warburton K, Yun Y, et al. Arm kinematics estimation with the harmony exoskeleton[C]//International Symposium on Wearable Robotics and Rehabilitation. Piscataway, USA:IEEE, 2017:10.1109/WEROB.2017.8383839. [15] Ogden E M, Chiu D, Clearman R, et al. Evaluation of the harmony exoskeleton as an upper extremity rehabilitation tool after stroke[C]//International Symposium on Wearable Robotics and Rehabilitation. Piscataway, USA:IEEE, 2017. DOI:10. 1109/WEROB.2017.8383834. [16] 方晓柯,韩冰,朱雪枫,等.基于速度场的上肢康复机器人的主动控制策略[J].东北大学学报(自然科学版), 2018, 39(2):153-157,171. Fang X K, Han B, Zhu X F, er al. Active control strategy for upper limb rehabilitation robot based on velocity field[J]. Journal of Northeastern University (Natural Science), 2018, 29(2):153-157,171. [17] 张雷雨,李剑锋,刘钧辉,等.上肢康复外骨骼的设计与人机相容性分析[J].机械工程学报, 2018, 54(5):19-28. Zhang L Y, Li J F, Liu J H, et al. Design and human-machine compatibility analysis of Co-Exos for upper-limb rehabilitation[J]. Journal of Mechanical Engineering, 2018, 54(5):19-28. [18] 佟丽娜,侯增广,彭亮,等.基于多路sEMG时序分析的人体运动模式识别方法[J].自动化学报, 2014, 40(5):810-821. Tong L N, Hou Z G, Peng L, et al. Multi-channel sEMG time series analysis based human motion recognition method[J]. Acta Automatica Sinica, 2014, 40(5):810-821. [19] 彭亮,侯增广,王卫群.康复机器人的同步主动交互控制与实现[J].自动化学报, 2015, 41(11):1837-1846. Peng L, Hou Z G, Wang W Q. Synchronous active interaction control and its implementation for a rehabilitation robot[J]. Acta Automatica Sinica, 2015, 41(11):1837-1846. [20] 张超,刘璇,侯增广,等.上肢机器人辅助疗法对恢复期脑卒中患者上肢运动功能及日常生活活动能力的效果[J]. 中国康复理论与实践, 2016, 22(12):1365-1370. Zhang C, Liu X, Hou Z G, et al. Effects of upper limb robotassisted therapy on motor function and activities of daily living in patients with convalescent stroke[J]. Chinese Journal of Rehabilitation Theory and Practice, 2016, 22(12):1365-1370. [21] 李庆玲.基于sEMG信号的外骨骼式机器人上肢康复系统研究[D].哈尔滨:哈尔滨工业大学, 2009. Li Q L. Study on sEMG based exoskeletal robot for upper limbs rehabilitation[D]. Harbin:Harbin Institute of Technology, 2009. [22] 魏月,郭欣,王蕾,等.实时手部精细运动意图识别方法的研究[J].中国康复医学杂志, 2019, 34(1):59-66. Wei Y, Guo X, Wang L, et al. Research on the real-time identification of hand movements[J]. Chinese Journal of Rehabilitation Medicine, 2019, 34(1):59-66. [23] 向云,王辉,倪俊杰,等.基于肌电、肌动信号评估不同频率电针对脑卒中病人上肢痉挛的干预作用[J].中西医结合心脑血管病杂志, 2017, 15(5):541-546. Xiang Y, Wang H, Ni J J, et al. Effects of different frequency electroacupuncture on upperlimb spasticity in patients with stroke based on EMG and MMG signal evaluation[J]. Chinese Journal of Integrative Medicine on Cardio-/Cerebrovascuiar Disease, 2017, 15(5):541-546. [24] 昌赢,孟青云,喻洪流.手部康复机器人技术研究进展[J]. 北京生物医学工程, 2018, 37(6):650-656. Chang Y, Meng Q Y, Yu H L. Research progress on the development of hand rehabilitation robot[J]. Beijing Biomedical Engineering, 2018, 37(6):650-656. [25] Iqbal J, Tsagarakis N G, Caldwell D G. Four-fingered lightweight exoskeleton robotic device accommodating different hand sizes[J]. Electronics Letters, 2015, 51(12):888-890. [26] Conti R, Meli E, Ridolfi A. A novel kinematic architecture for portable hand exoskeletons[J]. Mechatronics, 2016, 35:192-207. [27] Conti R, Meli E, Ridolfi A, et al. Kinematic synthesis and testing of a new portable hand exoskeleton[J]. Meccanica, 2017, 52:2873-2897. [28] Kim S, Lee J, Bae J. Analysis of finger muscular forces using a wearable hand exoskeleton system[J]. Journal of Bionic Engineering, 2017, 14:680-691. [29] Sale P, Stellin G, Masiero S, et al. FEX a fingers extending exoskeleton for rehabilitation and regaining mobility[M]//Mechanisms and Machine Science, Vol.49. Berlin, Germany:Springer, 2017:813-824. [30] Zhang F H, Hua L, Fu Y L, et al. Design and development of a hand exoskeleton for rehabilitation of hand injuries[J]. Mechanism and Machine Theory, 2014, 73:103-116. [31] 邢科新.手功能康复机器人系统若干关键技术研究[D].武汉:华中科技大学, 2010. Xing K X. Research on some key technologies of hand rehabilitation robot system[D]. Wuhan:Huazhong University of Science and Technology, 2010. [32] Popov D, Gaponov I, Ryu J H. Portable exoskeleton glove with soft structure for hand assistance in activities of daily living[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2):865-875. [33] Randazzo L, Iturrate I, Perdikis S, et al. Mano:A wearable hand exoskeleton for activities of daily living and neurorehabilitation[J]. IEEE Robotics and Automation Letters, 2018, 3(1):500-507. [34] Yang J Y, Xie H L, Shi J S. A novel motion-coupling design for a jointless tendon-driven finger exoskeleton for rehabilitation[J]. Mechanism and Machine Theory, 2016, 99:83-102. [35] Marchal-Crespo L, Tsangaridis P, Obwegeser D, et al. Haptic error modulation outperforms visual error amplification when learning a modified gait pattern[J]. Frontiers in Neuroscience, 2019. DOI:10.3389/fnins.2019.00061. [36] Wyss D, Pennycott A, Bartenbach V, et al. A multidimensional compliant decoupled actuator (MUCDA) for pelvic support during gait[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(1):164-174. [37] Miller L E, Zimmermann A K, Herbert W. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury:Systematic review with metaanalysis[J]. Medical Devices:Evidence and Research, 2016, 9:455-466. [38] Nolan K J, Karunakaran K K, Ehrenberg N, et al. Robotic exoskeleton gait training for inpatient rehabilitation in a young adult with traumatic brain injury[C]//40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2018:2809-2812. [39] Swank C, Almutairi S, Wang-Price S, et al. Immediate kinematic and muscle activity changes after a single robotic exoskeleton walking session post-stroke[J]. Topics in Stroke Rehabilitation, 2020, 27(7):503-515. [40] Rojek A, Mika A, Oleksy Ł, et al. Effects of exoskeleton gait training on balance, load distribution, and functional status in stroke:A randomized controlled trial[J]. Frontiers in Neurology, 2020. DOI:10.3389/fneur.2019.01344. [41] Murray S A, Ha K H, Hartigan C, et al. An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23(3):441-449. [42] Martínez A, Lawson B, Goldfarb M. A controller for guiding leg movement during overground walking with a lower limb exoskeleton[J]. IEEE Transactions on Robotics, 2018, 34(1):183-193. [43] Ekelem A, Goldfarb M. Supplemental stimulation improves swing phase kinematics during exoskeleton assisted gait of SCI subjects with severe muscle spasticity[J]. Frontiers in Neuroscience, 2018. DOI:10.3389/fnins.2018.00374. [44] Kawamoto H, Lee S, Kanbe S, et al. Power assist method for HAL-3 using EMG-based feedback controller[C]//IEEE International Conference on Systems, Man and Cybernetics. Piscataway, USA:IEEE, 2003:1648-1653. [45] Tanaka H, Nankaku M, Nishikawa T, et al. Spatiotemporal gait characteristic changes with gait training using the hybrid assistive limb for chronic stroke patients[J]. Gait & Posture, 2019, 71:205-210. [46] Watanabe H, Marushima A, Kadone H, et al. Effects of gait treatment with a single-leg hybrid assistive limb system after acute stroke:A non-randomized clinical trial[J]. Frontiers in Neuroscience, 2020. DOI:10.3389/fnins.2019.01389. [47] Lim B, Jang J, Lee J, et al. Delayed output feedback control for gait assistance and resistance using a robotic exoskeleton[J]. IEEE Robotics and Automation Letters, 2019, 4(4):3521-3528. [48] Choi B, Lee Y, Lee J, et al. Development of adjustable knee assist device for wearable robot based on linkage and rolling joint[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2019:4043-4050. [49] Liu D X, Wu X Y, Wang C, et al. Gait trajectory prediction for lower-limb exoskeleton based on deep spatial-temporal model (DSTM)[C]//2nd International Conference on Advanced Robotics and Mechatronics. Piscataway, USA:IEEE, 2017:564-569. [50] 刘笃信.下肢外骨骼机器人多模融合控制策略研究[D].深圳:中国科学院大学(中国科学院深圳先进技术研究院), 2018. Liu D X. Research on multimodal fusion-based control strategy for lower-limb exoskeleton robot[D]. Shenzhen:University of Chinese Academy of Sciences (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences), 2018. [51] 尹贵,张小栋,陈江城,等.下肢康复机器人按需辅助自适应控制方法[J].西安交通大学学报, 2017, 51(10):39-46. Yin G, Zhang X D, Chen J C, et al. Approach for adaptive assistance control of lower limb rehabilitation robot according to human need[J]. Journal of Xi'an Jiaotong University, 2017, 51(10):39-46. [52] 张小栋,陈江城,尹贵.下肢康复机器人肌电感知与人机交互控制方法[J].振动.测试与诊断, 2018, 38(4):649-657,866. Zhang X D, Chen J C, Yin G. An approach for human-robot interactive control of lower limb rehabilitation robot based on surface EMG perception[J]. Journal of Vibration, Measurement & Diagnosis, 2018, 38(4):649-657,866. [53] 屠尧,朱爱斌,宋纪元,等.下肢外骨骼康复机器人人机交互力自适应导纳控制[J].西安交通大学学报, 2019, 53(6):9-16. Tu Y, Zhu A B, Song J Y, et al. Adaptive admittance control of man-robot interaction force for lower limb exoskeleton rehabilitation robot[J]. Journal of Xi'an Jiaotong University, 2019, 53(6):9-16. [54] 杜义浩,邱石,谢平,等.下肢康复机器人的自适应人机交互控制策略[J].自动化学报, 2018, 44(4):743-750. Du Y H, Qiu S, Xie P, et al. Adaptive interaction control for lower limb rehabilitation robots[J]. Acta Automatica Sinica, 2018, 44(4):743-750. [55] Huang R, Cheng H, Qiu J, et al. Learning physical humanrobot interaction with coupled cooperative primitives for a lower exoskeleton[J]. IEEE Transaction on Automation Science and Technology, 2019, 16(4):1566-1574. [56] Wang Y L, Cheng H, Qiu J, et al. The AIDER system and its clinical application[J]. Science China:Information Sciences, 2021, 64. DOI:10.1007/s11432-019-9917-0. [57] Huang R, Peng Z N, Cheng H, et al. Learning-based walking assistance control strategy for a lower limb exoskeleton with hemiplegia patients[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2018:2280-2285. [58] Zhou Z H, Sun Y, Wang N H, et al. Robot-assisted rehabilitation of ankle plantar flexors spasticity:A 3-month study with proprioceptive neuromuscular facilitation[J]. Frontiers in Neurorobotics, 2016. DOI:10.3389/fnbot.2016.00016. [59] Jamwal P K, Hussain S, Xie S Q. Review on design and control aspects of ankle rehabilitation robots[J]. Disability and Rehabilitation:Assistive Technology, 2015, 10(2):93-101. [60] Jamwal P K, Hussain S, Xie S Q. Three-stage design analysis and multicriteria optimization of a parallel ankle rehabilitation robot using genetic algorithm[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(4):1433-1446. [61] Miao Q, Zhang M M, Wang C Z, et al. Towards optimal platform-based robot design for ankle rehabilitation:The state of the art and future prospects[J]. Journal of Healthcare Engineering, 2018. DOI:10.1155/2018/1534247. [62] Dasgupta B, Mruthyunjaya T S. The Stewart platform manipulator:A review[J]. Mechanism and Machine Theory, 2000, 35(1):15-40. [63] Girone M, Burdea G, Bouzit M. The "Rutgers" ankle orthopedic rehabilitation interface[DB/OL].[2020-06-28]. https://www.mendeley.com/catalogue/2f111830-3b10-3cc1-bf94-c7f68fd55c20/. [64] Dai J S, Zhao T S, Nester C. Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device[J]. Autonomous Robots, 2004, 16:207-218. [65] Selles R W, Li X Y, Lin F, et al. Feedback-controlled and programmed stretching of the ankle plantarflexors and dorsiflexors in stroke:Effects of a 4-week intervention program[J]. Archives of Physical Medicine and Rehabilitation, 2005, 86(12):2330-2336. [66] Zhang M M, Davies T C, Xie S E. Effectiveness of robotassisted therapy on ankle rehabilitation-A systematic review[J]. Journal of NeuroEngineering and Rehabilitation, 2013. DOI:10.1186/1743-0003-10-30. [67] Kao P C, Lewis C L, Ferris D P. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton[J]. Journal of Biomechanics, 2010, 43(2):203-209. [68] Kao P C, Lewis C L, Ferris D P. Joint kinetic response during unexpectedly reduced plantar flexor torque provided by a robotic ankle exoskeleton during walking[J]. Journal of Biomechanics, 2010, 43(7):1401-1407. [69] Norris J A, Granata K P, Mitros M R, et al. Effect of augmented plantarflexion power on preferred walking speed and economy in young and older adults[J]. Gait & Posture, 2007, 25(4):620-627. [70] Polinkovsky A, Bachmann R J, Kern N I, et al. An ankle foot orthosis with insertion point eccentricity control[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2012:1603-1608. [71] Leclair J, Pardoel S, Helal A, et al. Development of an unpowered ankle exoskeleton for walking assist[J]. Disability and Rehabilitation:Assistive Technology, 2020, 15(1):1-13. [72] Bae J, Siviy C, Rouleau M, et al. A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2018:2820-2827. [73] Kwon J, Park J H, Ku S, et al. A soft wearable robotic anklefoot-orthosis for post-stroke patients[J]. IEEE Robotics and Automation Letters, 2019, 4(3):2547-2552. [74] Koller J R, Remy C D, Ferris D P. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control[J]. Journal of NeuroEngineering and Rehabilitation, 2018, 15. DOI:10.1186/s12984-018-0379-6. [75] Liu Q, Liu A M, Meng W, et al. Hierarchical compliance control of a soft ankle rehabilitation robot actuated by pneumatic muscles[J]. Frontiers in Neurorobotics, 2017. DOI:10.3389/fnbot.2017.00064. [76] Kim J, Hwang S, Sohn R, et al. Development of an active ankle foot orthosis to prevent foot drop and toe drag in hemiplegic patients:A preliminary study[J]. Applied Bionics and Biomechanics, 2011, 8. DOI:10.3233/ABB-2011-0008. [77] Takahashi K Z, Lewek M D, Sawicki G S. A neuromechanicsbased powered ankle exoskeleton to assist walking post-stroke:A feasibility study[J]. Journal of NeuroEngineering and Rehabilitation, 2015, 12. DOI:10.1186/s12984-015-0015-7. [78] Xiong H, Diao X M. A review of cable-driven rehabilitation devices[J]. Disability and Rehabilitation:Assistive Technology, 2020, 15(8):885-897. [79] Clarke D J, Forster A. Improving post-stroke recovery:The role of the multidisciplinary health care team[J]. Journal of Multidisciplinary Healthcare, 2015, 8:433-442. [80] Poli P, Morone G, Rosati G, et al. Robotic technologies and rehabilitation:New tools for stroke patients' therapy[J]. BioMed Research International, 2013. DOI:10.1155/2013/153872. [81] Sharlin E, Itoh Y, Watson B, et al. Spatial tangible user interfaces for cognitive assessment and training[M]//Lecture Notes in Computer Science, Vol.3141. Berlin, Germany:Springer, 2004:137-152. [82] Kubota N, Botzheim J, Obo T. Human motion tracking and feature extraction for cognitive rehabilitation in informationally structured space[C]//9th France-Japan & 7th Europe-Asia Congress on Mechatronics/13th International Workshop on Research and Education in Mechatronics. Piscataway, USA:IEEE, 2012:464-471. [83] Aprile I, Guardati G, Cipollini V, et al. Robotic rehabilitation:An opportunity to improve cognitive functions in subjects with stroke:An explorative study[J]. Frontiers in Neurology, 2020. DOI:10.3389/fneur.2020.588285. [84] 赵德福,景俊,方琪,等.重复经颅磁刺激结合上肢机器人虚拟情景训练对脑卒中患者认知功能的研究[J].中国康复, 2020, 35(6):295-298. Zhao D F, Jing J, Fang Q, et al. Repetitive transcranial magnetic stimulation combined with upper limb robot virtual scenario training for stroke patients with cognitive impairment[J]. Chinese Journal of Rehabilitation, 2020, 35(6):295-298. [85] Parasuraman R, Manzey D H. Complacency and bias in human use of automation:An attentional integration[J]. Human Factors:The Journal of the Human Factors and Ergonomics Society, 2010, 52(3):381-410. [86] Giannopulu I. Cognitive and emotional interactions between autistic child, mobile robot and therapist:A case report[J]. Frontiers in Computational Neuroence, 2011, 5. DOI:10.3389/conf.fncom.2011.52.00002. [87] Chen Y L, Chen C L, Chang W H, et al. The development of a biofeedback training system for cognitive rehabilitation in cerebral palsy[C]//19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 1997. DOI:10.1109/IEMBS.1997.758711. [88] Lopez-Samaniego L, Garcia-Zapirain B. A robot-based tool for physical and cognitive rehabilitation of elderly people using biofeedback[J]. International Journal of Environmental Research and Public Health, 2016, 13(12). DOI:10.3390/ijerph 13121176. [89] Pearson Y, Borenstein J. The intervention of robot caregivers and the cultivation of children's capability to play[J]. Science and Engineering Ethics, 2013, 19:123-137. [90] Li J. The benefit of being physically present:A survey of experimental works comparing copresent robots, telepresent robots and virtual agents[J]. International Journal of Human-Computer Studies, 2015, 77:23-37. [91] Aziz A A, Moghanan F F M, Mohhsin M, et al. Humanoid-robot intervention for children with autism:A conceptual model on FBM[M]//Communications in Computer and Information Science, Vol.545. Berlin, Germany:Springer, 2015:231-241. [92] Shamsuddin S, Yusoff H, Ismail L I, et al. Initial response in HRI-A case study on evaluation of child with autism spectrum disorders interacting with a humanoid robot NAO[J]. Procedia Engineering, 2012, 41:1448-1455. [93] Komendziński T, Mikołajewska E, Mikołajewski D, et al. Cognitive robots in the development and rehabilitation of children with developmental disorders[J]. Bio-Algorithms and MedSystems, 2016, 12(3):93-98. [94] Palisano R, Rosenbaum P, Walter S, et al. Development and reliability of a system to classify gross motor function in children with cerebral palsy[J]. Developmental Medicine & Child Neurology, 2008, 39(4):214-223. [95] Montesano L, Díaz M, Bhaskar S, et al. Towards an intelligent wheelchair system for users with cerebral palsy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2010, 18(2):193-202. [96] Dautenhahn K. Socially intelligent robots:Dimensions of human-robot interaction[J]. Philosophical Transactions of the Royal Society B, 2007, 362(1480):679-704. [97] Bassolino M, Sandini G, Pozzo T. Activating the motor system through action observation:Is this an efficient approach in adults and children?[J] Development Medicine & Child Neurology, 2015, 57(S2):42-45. [98] Encarnação P, Alvarez L, Rios A, et al. Using virtual robot-mediated play activities to assess cognitive skills[J]. Disability and Rehabilitation:Assistive Technology, 2014, 9(3):231-241. [99] Ripich D N, Wykle M, Niles S. Alzheimer's disease caregivers:The FOCUSED program:A communication skills training program helps nursing assistants to give better care to patients with disease[J]. Geriatric Nursing, 1995, 16(1):15-19. [100] Care Work Foundation. Fact-finding survey on working conditions of care workers (in Japanese)[EB/OL]. (2020-08-07)[2020-06-28]. http://www.kaigo-center.or.jp/. [101] Krebs H I, Hogan N. Therapeutic robotics:A technology push[J]. Proceedings of the IEEE, 2006, 94(9):1727-1738. [102] Pou-Prom C, Raimondo S, Rudzicz F. A conversational robot for older adults with Alzheimer's disease[J]. ACM Transactions on Human-Robot Interaction, 2020, 9(3):1-25. [103] Kuwamura K, Nishio S, Sato S. Can we talk through a robot as if face-to-face? Long-term fieldwork using teleoperated robot for seniors with Alzheimer's disease[J]. Frontiers in Psychology, 2016. DOI:10.3389/fpsyg.2016.01066. [104] Wu Y H, Faucounau V, Granata C, et al. Personal service robot for the elderly in home:A preliminary experiment of human-robot interaction[J]. Gerontechnology, 2010, 9. DOI:10.4017/gt.2010.09.02.284.00. [105] Kachmar O, Kozyavkin V, Ablikova I. Humanoid social robots in the rehabilitation of children with cerebral palsy[C]//8th International Conference on Pervasive Computing Technologies for Healthcare. 2006. DOI:10.4108/icst.pervasivehealth.2014.255323. [106] Rudzicz F, Wang R, Begum M, et al. Speech recognition in Alzheimer's disease with personal assistive robots[C]//5th Workshop on Speech and Language Processing for Assistive Technologies. Stroudsburg, USA:ACL, 2014:20-28. [107] Feil-Seifer D, Matarić M J. Defining socially assistive robotics[C]//9th International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2005:465-468. [108] Tapus A, Tapus C, Mataric M. Music therapist robot for people suffering from dementia:Longitudinal study[J]. Alzheimer's Dementia, 2009, 5(45). DOI:10.1016/j.jalz.2009.04.580. [109] Nakashima T, Fukutome G, Ishii N. Healing effects of pet robots at an elderly-care facility[C]//IEEE/ACIS 9th International Conference on Computer and Information Science. Piscataway, USA:IEEE, 2010:407-412. [110] Moyle W, Jones C, Sung B, et al. What effect does an animal robot called CuDDler have on the engagement and emotional response of older people with dementia? A pilot feasibility study[J]. International Journal of Social Robotics, 2016, 8:145-156. [111] Pou-Prom C, Raimondo S, Rudzicz F. A conversational robot for older adults with Alzheimer's disease[J]. ACM Transactions on Human-Robot Interaction, 2020, 9(3):1-25. [112] Ismail N N N N, Lokman A M, Redzuan F. Spiritual design elements as emotional therapy for malay muslim elderly with Alzheimer's disease using therapeutic robot[J]. Journal of Theoretical and Applied Information Technology, 2017, 95(16):3949-3962. [113] Nef T, Riener R. ARMin-Design of a novel arm rehabilitation robot[C]//9th International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2005:57-60. [114] 王陇德,刘建民,杨弋,等. 《中国脑卒中防治报告2017》概要[J].中国脑血管病杂志, 2018, 15(11):611-616. Wang L D, Liu J M, Yang Y, et al. Summary of stroke prevention and treatment report 2017 in China[J]. Chinese Journal of Cerebrovascular Diseases, 2018, 15(11):611-616. [115] 张通.中国脑卒中康复治疗指南(2011完全版)[J].中国康复理论与实践, 2012, 18(4):301-318. Zhang T. Chinese guidelines for rehabilitation of stroke (2011)[J]. Chinese Journal of Rehabilitation Theory and Practice, 2012, 18(4):301-318. [116] 戴红,王威,于石成,等.北京市城区居民脑卒中致残状况及对社区康复的需求[J].中国康复医学杂志, 2000, 15(6):344-347. Dai H, Wang W, Yu S C, et al. The status of stroke disability of Beijing city residents and their community rehabilitation needs[J]. Chinese Journal of Rehabilitation Medicine, 2000, 15(6):344-347. [117] Varghese R J, Freer D, Deligianni F, et al. Wearable robotics for upper-limb rehabilitation and assistance:A review of the state-of-the-art, challenges, and future research[M]//Wearable Technology in Medicine and Health Care. Amsterdam, Netherlands:Elsevier, 2018:23-69. [118] Shin B C, Lim H J, Lee M S. Effectiveness of combined acupuncture therapy and conventional treatment on shoulder range of motion and motor power in stroke patients with hemiplegic shoulder subluxation:A pilot study[J]. International Journal of Neuroscience, 2007, 117(4):519-523. [119] Klamroth-Marganska V, Blanco J, Campen K, et al. Threedimensional, task-specific robot therapy of the arm after stroke:A multicentre, parallel-group randomised trial[J]. The Lancet Neurology, 2014, 13(2):159-166. [120] Bertani R, Melegari C, de Cola M C, et al. Effects of robotassisted upper limb rehabilitation in stroke patients:A systematic review with meta-analysis[J]. Neurological Sciences, 2017, 38:1561-1569. [121] 梁天佳,吴小平,莫明玉.上肢康复机器人训练对偏瘫患者上肢功能恢复的影响[J].中国康复医学杂志, 2012, 27(3):254-256. Liang T J, Wu X P, Mo M Y. Effects of upper limb rehabilitation robot training on upper limb functional recovery in patients with hemiplegia[J]. Chinese Journal of Rehabilitation Medicine, 2012, 27(3):254-256. [122] Masiero S, Celia A, Rosati G, et al. Robotic-assisted rehabilitation of the upper limb after acute stroke[J]. Archives of Physical Medicine and Rehabilitation, 2007, 88(2):142-149. [123] Lum P S, Burgar C G, Shor P C, et al. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke[J]. Archives of Physical Medicine and Rehabilitation, 2002, 83(7):952-959. [124] 龙耀斌.康复机器人训练对脑卒中偏瘫患者上肢功能的影响[J].中国康复, 2012, 27(3):171-173. Long Y B. Effect of rehabilitation robot on upper extremity function of hemiplegic patients[J]. Chinese Journal of Rehabilitation, 2012, 27(3):171-173. [125] Hidler J M, Wall A E. Alterations in muscle activation patterns during robotic-assisted walking[J]. Clinical Biomechanics, 2005, 20(2):184-193. [126] 杨振辉. 下肢康复机器人的应用[J]. 现代职业安全, 2012(11):115-117. Yang Z H. Application of lower limb rehabilitation robot[J]. Modern Occupational Safety, 2012(11):115-117. [127] 王俊,杨振辉,刘海兵,等.下肢康复机器人在脑卒中患者步行障碍中的应用和研究进展[J].中国康复医学杂志, 2014, 29(8):784-788. Wang J, Yang Z H, Liu H B, et al. The application and research progress of lower limb rehabilitation robot in walking disorder of stroke patients[J]. Chinese Journal of Rehabilitation Medicine, 2014, 29(8):784-788. [128] 赵雅宁,郝正玮,李建民,等.下肢康复训练机器人对缺血性脑卒中偏瘫患者平衡及步行功能的影响[J].中国康复医学杂志, 2012, 27(11):1015-1020. Zhao Y N, Hao Z W, Li J M, et al. The effect of Lokomat lower limb gait training rehabilitation robot on balance function and walking ability in hemiplegic patients after ischemic stroke[J]. Chinese Journal of Rehabilitation Medicine, 2012, 27(11):1015-1020. [129] Westlake K P, Patten C. Pilot study of Lokomat versus manualassisted treadmill training for locomotor recovery post-stroke[J]. Journal of NeuroEngineering and Rehabilitation, 2009, 6. DOI:10.1186/1743-0003-6-18. [130] Bianca C, Zhang M, Shang K, et al. The Fourier M2 robotic machine combined with occupational therapy on post-stroke upper limb function and independence-related quality of life:A randomized clinical trial[J]. Topics in Stroke Rehabilitation, 2021, 28(1):1-18.