Abstract:The limitations of WAEX (walking assist exoskeleton) and the basic bionic research on human lower-limbs are summarized according to the research status of WAEX for paraplegics and human movement mechanism. On this basis, the suggestions and prospects for anthropomorphic design and research are put forward to improve the WAEX with good stability, rich functionality and comfortable wearing. Firstly, the limitations of the present WAEX are analyzed and summarized, such as poor stability, limited functionality and unsatisfactory comfortability. As the anthropomorphic design can inspire the innovative research of WAEX, the neuromusculoskeletal structure, information sensing and neural control of human lowerlimbs are described to make clear their contributions to lower-limb movement and balance. Then, the typical mechanical structure, actuation, sensing and control system of the present WAEX are summarized. By comparing the performance of WAEX with its expected goal, the main research tendencies and key technologies in enhancing the stability, functionality and comfortability of WAEX are summarized and prospected.
[1] Pontzer H. Economy and endurance in human evolution[J]. Current Biology, 2017, 27(12):R613-R621. [2] Alexander R M. Principles of animal locomotion[M]. Princeton, USA:Princeton University Press, 2013. [3] Malcolm P, Derave W, Galle S, et al. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking[J]. PLoS One, 2013, 8(2):e56137. [4] Dietz V. Spinal cord pattern generators for locomotion[J]. Clinical Neurophysiology, 2003, 114(8):1379-1389. [5] Davidson P R, Wolpert D M. Widespread access to predictive models in the motor system:A short review[J]. Journal of Neural Engineering, 2005, 2(3):S313-S319. [6] Haisma J A, van der Woude L H, Stam H J, et al. Physical capacity in wheelchair-dependent persons with a spinal cord injury:A critical review of the literature[J]. Spinal Cord, 2006, 44(11):642-652. [7] GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators. Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016:A systematic analysis for the Global Burden of Disease Study 2016[J]. The Lancet Neurology, 2019, 18(1):56-87. [8] Huo W G, Mohammed S, Moreno J C, et al. Lower limb wearable robots for assistance and rehabilitation:A state of the art[J]. IEEE Systems Journal, 2016, 10(3):1068-1081. [9] Vukobratovic M, Hristic D, Stojiljkovic Z. Development of active anthropomorphic exoskeletons[J]. Medical and Biological Engineering, 1974, 12(1):66-80. [10] Esquenazi A, Talaty M, Packel A, et al. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury[J]. American Journal of Physical Medicine & Rehabilitation, 2012, 91(11):911-921. [11] Zeilig G, Weingarden H, Zwecker M, et al. Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury:A pilot study[J]. The Journal of Spinal Cord Medicine, 2012, 35(2):96-101. [12] Strausser K A, Swift T A, Zoss A B, et al. Mobile exoskeleton for spinal cord injury:Development and testing[C]//ASME Dynamic Systems and Control Conference. New York, USA:ASME, 2011:419-425. [13] Strausser K A, Kazerooni H. The development and testing of a human machine interface for a mobile medical exoskeleton[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2011:4911-4916. [14] Farris R J, Quintero H A, Goldfarb M. Preliminary evaluation of a powered lower limb orthosis to aid walking in paraplegic individuals[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2011, 19(6):652-659. [15] Quintero H A, Farris R J, Goldfarb M. Control and implementation of a powered lower limb orthosis to aid walking in paraplegic individuals[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2011. DOI:10.1109/icorr.2011.5975481. [16] Farris R J, Quintero H A, Goldfarb M. Performance evaluation of a lower limb exoskeleton for stair ascent and descent with paraplegia[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2012:1908-1911. [17] Suzuki K, Kawamura Y, Hayashi T, et al. Intention-based walking support for paraplegia patient[C]//IEEE International Conference on Systems, Man and Cybernetics. Piscataway, USA:IEEE, 2005:2707-2713. [18] Tsukahara A, Hasegawa Y, Eguchi K, et al. Restoration of gait for spinal cord injury patients using HAL with intention estimator for preferable swing speed[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23(2):308-318. [19] Contreras-Vidal J L, Grossman R G. NeuroRex:A clinical neural interface roadmap for EEG-based brain machine interfaces to a lower body robotic exoskeleton[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2013:1579-1582. [20] Lajeunesse V, Vincent C, Routhier F, et al. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury[J]. Disability and Rehabilitation:Assistive Technology, 2016, 11(7):535-547. [21] Viteckova S, Kutilek P, Jirina M. Wearable lower limb robotics:A review[J]. Biocybernetics and Biomedical Engineering, 2013, 33(2):96-105. [22] Pinto-Fernandez D, Torricelli D, Sanchez-Villamanan M D C, et al. Performance evaluation of lower limb exoskeletons:A systematic review[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28(7):1573-1583. [23] Chen B, Zi B, Qin L, et al. State-of-the-art research in robotic hip exoskeletons:A general review[J]. Journal of Orthopaedic Translation, 2020, 20:4-13. [24] Aliman N, Ramli R, Haris S M. Design and development of lower limb exoskeletons:A survey[J]. Robotics and Autonomous Systems, 2017, 95:102-116. [25] Pamungkas D S, Caesarendra W, Soebakti H, et al. Overview:Types of lower limb exoskeletons[J]. Electronics, 2019, 8(11). DOI:10.3390/electronics8111283. [26] Jiménez-Fabián R, Verlinden O. Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons[J]. Medical Engineering & Physics, 2012, 34(4):397-408. [27] Dollar A M, Herr H. Lower extremity exoskeletons and active orthoses:Challenges and state-of-the-art[J]. IEEE Transactions on Robotics, 2008, 24(1):144-158. [28] Young A J, Ferris D P. State of the art and future directions for lower limb robotic exoskeletons[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(2):171-182. [29] Sanchez-Villamanan M D C, Gonzalez-Vargas J, Torricelli D, et al. Compliant lower limb exoskeletons:A comprehensive review on mechanical design principles[J]. Journal of NeuroEngineering and Rehabilitation, 2019, 16. DOI:10.1186/s12984-019-0517-9. [30] Esquenazi A, Talaty M, Jayaraman A. Powered exoskeletons for walking assistance in persons with central nervous system injuries:A narrative review[J]. PM & R, 2017, 9(1):46-62. [31] Hartigan C, Kandilakis C, Dalley S, et al. Mobility outcomes following five training sessions with a powered exoskeleton[J]. Topics in Spinal Cord Injury Rehabilitation, 2015, 21(2):93-99. [32] Farris R J, Quintero H A, Murray S A, et al. A preliminary assessment of legged mobility provided by a lower limb exoskeleton for persons with paraplegia[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, 22(3):482-490. [33] Neumann D A. Kinesiology of the musculoskeletal system:Foundations for rehabilitation[M]. 3rd ed. UK:Mosby-Wolfe, 2016. [34] van de Crommert H W A A, Mulder T, Duysens J. Neural control of locomotion:Sensory control of the central pattern generator and its relation to treadmill training[J]. Gait & Posture, 1998, 7(3):251-263. [35] Winter D A. Human balance and posture control during standing and walking[J]. Gait & Posture, 1995, 3(4):193-214. [36] Zhang L, Liu G, Han B, et al. Assistive devices of human knee joint:A review[J]. Robotics and Autonomous Systems, 2020, 125. DOI:10.1016/j.robot.2019.103394. [37] Yan T F, Cempini M, Oddo C M, et al. Review of assistive strategies in powered lower-limb orthoses and exoskeletons[J]. Robotics and Autonomous Systems, 2015, 64:120-136. [38] Cenciarini M, Dollar A M. Biomechanical considerations in the design of lower limb exoskeletons[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2011. DOI:10.1109/ICORR.2011.5975366. [39] 王森,李艳文,陈子明,等.变轴线生物融合式膝关节康复机构型综合[J].机械工程学报, 2020, 56(11):72-79. Wang S, Li Y W, Chen Z M, et al. Type synthesis of rehabilitation mechanism of variable axis bio-fusion knee joint[J]. Journal of Mechanical Engineering, 2020, 56(11):72-79. [40] Radcliffe C W. Four-bar linkage prosthetic knee mechanisms:Kinematics, alignment and prescription criteria[J]. Prosthetics & Orthotics International, 1994, 18(3):159-173. [41] Hyun D J, Park H, Ha T, et al. Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance[J]. Robotics and Autonomous Systems, 2017, 95:181-195. [42] Hamon A, Aoustin Y, Caro S. Two walking gaits for a planar bipedal robot equipped with a four-bar mechanism for the knee joint[J]. Multibody System Dynamics, 2014, 31(3):283-307. [43] Aoustin Y, Hamon A A. Human like trajectory generation for a biped robot with a four-bar linkage for the knees[J]. Robotics and Autonomous Systems, 2013, 61(12):1717-1725. [44] Buśkiewicz J. Use of shape invariants in optimal synthesis of geared five-bar linkage[J]. Mechanism and Machine Theory, 2010, 45(2):273-290. [45] Mundo D, Gatti G, Dooner D B. Optimized five-bar linkages with non-circular gears for exact path generation[J]. Mechanism and Machine Theory, 2009, 44(4):751-760. [46] Sun Y, Ge W, Zheng J, et al. Design and evaluation of a prosthetic knee joint using the geared five-bar mechanism[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23(6):1031-1038. [47] Jin D, Zhang R, Dimo H O, et al. Kinematic and dynamic performance of prosthetic knee joint using six-bar mechanism[J]. Journal of Rehabilitation Research and Development, 2003, 40(1):39-48. [48] Lee K M, Guo J. Kinematic and dynamic analysis of an anatomically based knee joint[J]. Journal of Biomechanics, 2010, 43(7):1231-1236. [49] Wang D, Lee K M, Guo J, et al. Adaptive knee joint exoskeleton based on biological geometries[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(4):1268-1278. [50] Yang W, Yang C J, Wei Q X. Design of an anthropomorphic lower extremity exoskeleton with compatible joints[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2014:1374-1379. [51] Kim J H, Shim M, Ahn D H, et al. Design of a knee exoskeleton using foot pressure and knee torque sensors[J]. International Journal of Advanced Robotic Systems, 2015, 12(8). DOI:10.5772/60782. [52] Liao Y, Zhou Z H, Wang Q N. BioKEX:A bionic knee exoskeleton with proxy-based sliding mode control[C]//IEEE International Conference on Industrial Technology. Piscataway, USA:IEEE, 2015:125-130. [53] Ergin M A, Patoglu V. A self-adjusting knee exoskeleton for robot-assisted treatment of knee injuries[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2011:4917-4922. [54] Celebi B, Yalcin M, Patoglu V. AssistOn-Knee:A self-aligning knee exoskeleton[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:996-1002. [55] Wang S, Wang L, Meijneke C, et al. Design and control of the MINDWALKER exoskeleton[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2015, 23(2):277-286. [56] Neuhaus P D, Noorden J H, Craig T J, et al. Design and evaluation of Mina:A robotic orthosis for paraplegics[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2011. DOI:10.1109/ICORR.2011.5975468. [57] Vanderborght B, Albu-Schaeffer A, Bicchi A, et al. Variable impedance actuators:A review[J]. Robotics and Autonomous Systems, 2013, 61(12):1601-1614. [58] Torricelli D, Gonzalez J, Weckx M, et al. Human-like compliant locomotion:State of the art of robotic implementations[J]. Bioinspiration & Biomimetics, 2016, 11(5). DOI:10.1088/1748-3190/11/5/051002. [59] Cestari M, Sanz-Merodio D, Arevalo J C, et al. An adjustable compliant joint for lower-limb exoskeletons[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(2):889-898. [60] Zhong B, Cao J H, McDaid A, et al. Synchronous position and compliance regulation on a bi-joint gait exoskeleton driven by pneumatic muscles[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(4):2162-2166. [61] Beyl P, van Damme M, van Ham R, et al. Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exoskeletons[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3):1046-1056. [62] Ronsse R, Lenzi T, Vitiello N, et al. Oscillator-based assistance of cyclical movements:Model-based and model-free approaches[J]. Medical & Biological Engineering & Computing, 2011, 49(10):1173-1185. [63] Giovacchini F, Vannetti F, Fantozzi M, et al. A light-weight active orthosis for hip movement assistance[J]. Robotics and Autonomous Systems, 2015, 73:123-134. [64] Lenzi T, Carrozza M C, Agrawal S K. Powered hip exoskeletons can reduce the user's hip and ankle muscle activations during walking[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21(6):938-948. [65] Tucker M R, Olivier J, Pagel A, et al. Control strategies for active lower extremity prosthetics and orthotics:A review[J]. Journal of NeuroEngineering and Rehabilitation, 2015, 12. DOI:10.1186/1743-0003-12-1. [66] Zhou L B, Chen W H, Wang J H, et al. A novel precision measuring parallel mechanism for the closed-loop control of a biologically inspired lower limb exoskeleton[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(6):2693-2703. [67] Marchal-Crespo L, Reinkensmeyer D J. Review of control strategies for robotic movement training after neurologic injury[J]. Journal of NeuroEngineering and Rehabilitation, 2009, 6. DOI:10.1186/1743-0003-6-20. [68] Wagner H, Blickhan R. Stabilizing function of skeletal muscles:An analytical investigation[J]. Journal of Theoretical Biology, 1999, 199(2):163-179. [69] Ganesan V, Gu E Y L. Fall protection framework of lower extremity exoskeleton walking system based on differential motion planning[J]. International Journal of Social Robotics, 2021, 13:969-980. [70] Kwa H K, Noorden J H, Missel M, et al. Development of the IHMC mobility assist exoskeleton[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2009:2556-2562. [71] Quintero H, Farris R, Hartigan C, et al. A powered lower limb orthosis for providing legged mobility in paraplegic individuals[J]. Topics in Spinal Cord Injury Rehabilitation, 2011, 17(1):25-33. [72] Mori Y, Okada J, Takayama K. Development of a standing style transfer system "ABLE" for disabled lower limbs[J]. IEEE/ASME Transactions on Mechatronics, 2006, 11(4):372-380. [73] Kolakowsky-Hayner S A, Crew J, Moran S, et al. Safety and feasibility of using the EksoTM bionic exoskeleton to aid ambulation after spinal cord injury[J]. Journal of Spine, 2013. DOI:10.4172/2165-7939.S4-003. [74] Suzuki K, Mito G, Kawamoto H, et al. Intention-based walking support for paraplegia patients with robot suit HAL[J]. Advanced Robotics, 2007, 21(12):1441-1469. [75] Ekelem A, Bastas G, Durrough C M, et al. Variable geometry stair ascent and descent controller for a powered lower limb exoskeleton[J]. Journal of Medical Devices, 2018, 12(3). DOI:10.1115/1.4040699. [76] Xu F S, Huang R, Cheng H, et al. Stair-ascent strategies and performance evaluation for a lower limb exoskeleton[J]. International Journal of Intelligent Robotics and Applications, 2020, 4(3):278-293. [77] Hof A L, Vermerris S M, Gjaltema W A. Balance responses to lateral perturbations in human treadmill walking[J]. Journal of Experimental Biology, 2010, 213(15):2655-2664. [78] Hof A L, Duysens J. Responses of human hip abductor muscles to lateral balance perturbations during walking[J]. Experimental Brain Research, 2013, 230(3):301-310. [79] Lee H, Rouse E J, Krebs H I. Summary of human ankle mechanical impedance during walking[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2016, 4. DOI:10.1109/JTEHM.2016.2601613. [80] Sanz-Merodio D, Cestari M, Arevalo J C, et al. Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance[J]. Advanced Robotics, 2014, 28(5):329-338. [81] Riener R, Rabuffetti M, Frigo C. Stair ascent and descent at different inclinations[J]. Gait & Posture, 2002, 15(1):32-44. [82] Lay A N, Hass C J, Gregor R J. The effects of sloped surfaces on locomotion:A kinematic and kinetic analysis[J]. Journal of Biomechanics, 2006, 39(9):1621-1628. [83] Spanjaard M, Reeves N D, van Dieën J H, et al. Influence of step-height and body mass on gastrocnemius muscle fascicle behavior during stair ascent[J]. Journal of Biomechanics, 2008, 41(5):937-944. [84] Louie D R, Eng J J, Lam T, et al. Gait speed using powered robotic exoskeletons after spinal cord injury:A systematic review and correlational study[J]. Journal of NeuroEngineering and Rehabilitation, 2015, 12. DOI:10.1186/s12984-015-0074-9. [85] Andrews A W, Chinworth S A, Bourassa M, et al. Update on distance and velocity requirements for community ambulation[J]. Journal of Geriatric Physical Therapy, 2010, 33(3):128-134. [86] Ugurlu B, Oshima H, Sariyildiz E, et al. Active compliance control reduces upper body effort in exoskeleton-supported walking[J]. IEEE Transactions on Human-Machine Systems, 2020, 50(2):144-153. [87] Talaty M, Esquenazi A, Briceno J E. Differentiating ability in users of the ReWalkTM powered exoskeleton:An analysis of walking kinematics[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2013. DOI:10. 1109/ICORR.2013.6650469. [88] Orendurff M S, Schoen J A, Glaister B C, et al. Joint rotation torques during a common turning task[J]. Gait & Posture, 2006, 24(S2):S201-S203. [89] Taylor M, Dabnichki P, Strike S C. A three-dimensional biomechanical comparison between turning strategies during the stance phase of walking[J]. Human Movement Science, 2005, 24(4):558-573. [90] Xu D, Chow J W, Wang Y T. Effects of turn angle and pivot foot on lower extremity kinetics during walk and turn actions[J]. Journal of Applied Biomechanics, 2006, 22(1):74-79. [91] Orendurff M S, Segal A D, Berge J S, et al. The kinematics and kinetics of turning:Limb asymmetries associated with walking a circular path[J]. Gait & Posture, 2006, 23(1):106-111. [92] Marin J, Nixon J, Gorecki C. A systematic review of risk factors for the development and recurrence of pressure ulcers in people with spinal cord injuries[J]. Spinal Cord, 2013, 51(7):522-527. [93] Fineberg D B, Asselin P, Harel N Y, et al. Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia[J]. The Journal of Spinal Cord Medicine, 2013, 36(4):313-321. [94] Benson I, Hart K, Tussler D, et al. Lower-limb exoskeletons for individuals with chronic spinal cord injury:Findings from a feasibility study[J]. Clinical Rehabilitation, 2016, 30(1):73-84. [95] Pfeifer S, Vallery H, Hardegger M, et al. Model-based estimation of knee stiffness[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(9):2604-2612. [96] Freutel M, Schmidt H, Dürselen L, et al. Finite element modeling of soft tissues:Material models, tissue interaction and challenges[J]. Clinical Biomechanics, 2014, 29(4):363-372. [97] Masouros S D, Bull A M J, Amis A A. Biomechanics of the knee joint[J]. Orthopaedics and Trauma, 2010, 24(2):84-91. [98] Watanabe K, Kitaoka H B, Berglund L J, et al. The role of ankle ligaments and articular geometry in stabilizing the ankle[J]. Clinical Biomechanics, 2012, 27(2):189-195. [99] Zelik K E, Takahashi K Z, Sawicki G S. Six degree-of-freedom analysis of hip, knee, ankle and foot provides updated understanding of biomechanical work during human walking[J]. The Journal of Experimental Biology, 2015, 218(6):876-886. [100] Riddick R C, Kuo A D. Soft tissues store and return mechanical energy in human running[J]. Journal of Biomechanics, 2016, 49(3):436-441. [101] Zelik K E, Kuo A D. Mechanical work as an indirect measure of subjective costs influencing human movement[J]. PLoS One, 2012, 7(2). DOI:10.1371/journal.pone.0031143. [102] Zelik K E, Kuo A D. Human walking isn't all hard work:Evidence of soft tissue contributions to energy dissipation and return[J]. The Journal of Experimental Biology, 2010, 213(24):4257-4264. [103] Hughes J, Clark P, Klenerman L. The importance of the toes in walking[J]. The Journal of Bone and Joint Surgery, 1990, 72(2):245-251. [104] Man H S, Lam W K, Lee J, et al. Is passive metatarsophalangeal joint stiffness related to leg stiffness, vertical stiffness and running economy during sub-maximal running?[J]. Gait & Posture, 2016, 49:303-308. [105] Goldmann J P, Brüggemann G P. The potential of human toe flexor muscles to produce force[J]. Journal of Anatomy, 2012, 221(2):187-194. [106] Qiao M, Abbas J J, Jindrich D L. A model for differential leg joint function during human running[J]. Bioinspiration and Biomimetics, 2017, 12(1). DOI:10.1088/1748-3190/aa50b0. [107] Qiao M, Jindrich D L. Leg joint function during walking acceleration and deceleration[J]. Journal of Biomechanics, 2016, 49(1):66-72. [108] Dickinson M H, Farley C T, Full R J, et al. How animals move:An integrative view[J]. Science, 2000, 288(5463):100-106. [109] Lai A K M, Biewener A A, Wakeling J M. Muscle-specific indices to characterise the functional behaviour of human lowerlimb muscles during locomotion[J]. Journal of Biomechanics, 2019, 89:134-138. [110] Konow N, Azizi E, Roberts T J. Muscle power attenuation by tendon during energy dissipation[J]. Proceedings of the Royal Society B:Biological Science, 2012, 279(1731):1108-1113. [111] Hill A V. Production and absorption of work by muscle[J]. Science, 1960, 131(3404):897-903. [112] Roberts T J, Azizi E. Flexible mechanisms:The diverse roles of biological springs in vertebrate movement[J]. The Journal of Experimental Biology, 2011, 214(3):353-361. [113] Roberts T J, Azizi E. The series-elastic shock absorber:Tendons attenuate muscle power during eccentric actions[J]. Journal of Applied Physiology, 2010, 109(2):396-404. [114] Bobbert M F, Huijing P A, van Ingen Schenau G J. A model of the human triceps surae muscle-tendon complex applied to jumping[J]. Journal of Biomechanics, 1986, 19(11):887-898. [115] Bobbert M F, Huijing P A, van Ingen Schenau G J. An estimation of power output and work done by the human triceps surae muscle-tendon complex in jumping[J]. Journal of Biomechanics, 1986, 19(11):899-906. [116] Cleather D J, Southgate D F L, Bull A M J. The role of the biarticular hamstrings and gastrocnemius muscles in closed chain lower limb extension[J]. Journal of Theoretical Biology, 2015, 365:217-225. [117] Oh S, Salvucci V, Kimura Y, et al. Mathematical and experimental verification of efficient force transmission by biarticular muscle actuator[J]. IFAC Proceedings Volumes, 2011, 44(1):13516-13521. [118] Nilsson J, Thorstensson A, Halbertsma J. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans[J]. Acta Physiologica Scandinavica, 1985, 123(4):457-475. [119] Sharbafi M A, Rashty A M N, Rode C, et al. Reconstruction of human swing leg motion with passive biarticular muscle models[J]. Human Movement Science, 2017, 52(Complete):96-107. [120] Baratta R, Solomonow M, Zhou B H, et al. Muscular coactivation. The role of the antagonist musculature in maintaining knee stability[J]. American Journal of Sports Medicine, 1988, 16(2):113-122. [121] Cleather D J. An important role of the biarticular hamstrings is to exert internal/external rotation moments on the tibia during vertical jumping[J]. Journal of Theoretical Biology, 2018, 455:101-108. [122] Horak F B. Postural orientation and equilibrium:What do we need to know about neural control of balance to prevent falls?[J]. Age and Ageing, 2006, 35(S2):ii7-ii11. [123] Bays P M, Wolpert D M. Computational principles of sensorimotor control that minimize uncertainty and variability[J]. The Journal of Physiology, 2010, 578(2):387-396. [124] Peterka R J. Sensorimotor integration in human postural control[J]. Journal of Neurophysiology, 2002, 88(3):1097-1118. [125] Friedrich M, Grein H J, Wicher C, et al. Influence of pathologic and simulated visual dysfunctions on the postural system[J]. Experimental Brain Research, 2008, 186(2):305-314. [126] Tomomitsu M S V, Alonso A C, Morimoto E, et al. Static and dynamic postural control in low-vision and normal-vision adults[J]. Clinics, 2013, 68(4):517-521. [127] Angelaki D E, Cullen K E. Vestibular system:The many facets of a multimodal sense[J]. Annual Review of Neuroscience, 2008, 31:125-150. [128] Halperin O, Israeli-Korn S, Yakubovich S, et al. Self-motion perception in Parkinson's disease[J]. The European Journal of Neuroscience, 2021, 53(7):2376-2387. [129] Loeb G E. Neural control of locomotion[J]. BioScience, 1989, 39(11):800-804. [130] Stein P S G, Grillner S, Selverston A I, et al. Neurons, networks, and motor behavior[M]. Cambridge, USA:MIT Press, 1997. [131] Dietz V. Proprioception and locomotor disorders[J]. Nature Reviews Neuroscience, 2002, 3:781-790. [132] Gandevia S C, Proske U, Stuart D G. Sensorimotor control of movement and posture[M]. Boston, USA:Springer, 2002. [133] Capaday C. The special nature of human walking and its neural control[J]. Trends in Neurosciences, 2002, 25(7):370-376. [134] Nielsen J B, Sinkjaer T. Afferent feedback in the control of human gait[J]. Journal of Electromyography and Kinesiology, 2002, 12(3):213-217. [135] Subburaman R, Kanoulas D, Muratore L, et al. Human inspired fall prediction method for humanoid robots[J]. Robotics and Autonomous Systems, 2019, 121. DOI:10.1016/j.robot. 2019.103257. [136] Fitzpatrick R C, Taylor J L, McCloskey D I. Ankle stiffness of standing humans in response to imperceptible perturbation:Reflex and task-dependent components[J]. The Journal of Physiology, 1992, 454:533-547. [137] Mihelj M, Matjacic Z, Bajd T. Postural activity of constrained subject in response to disturbance in sagittal plane[J]. Gait & Posture, 2000, 12(2):94-104. [138] Henry S M, Fung J, Horak F B. EMG responses to maintain stance during multidirectional surface translations[J]. Journal of Neurophysiology, 1998, 80(4):1939-1950. [139] Latash M L, Zatsiorsky V M. Joint stiffness:Myth or reality?[J]. Human Movement Science, 1993, 12(6):653-692. [140] Xie H L, Liang Z Z, Li F, et al. The knee joint design and control of above-knee intelligent bionic leg based on magnetorheological damper[J]. International Journal of Automation and Computing, 2010, 7(3):277-282. [141] Veale A J, Xie S Q. Towards compliant and wearable robotic orthoses:A review of current and emerging actuator technologies[J]. Medical Engineering & Physics, 2016, 38(4):317-325. [142] 魏敦文,葛文杰,高涛.仿生灵感下的弹性驱动器的研究综述[J].机器人, 2017, 39(4):541-550. Wei D W, Ge W J, Gao T. Review of elastic actuator research from bionic inspiration[J]. Robot, 2017, 39(4):541-550. [143] Pratt J, Krupp B, Morse C. Series elastic actuators for high fidelity force control[J]. Industrial Robot, 2002, 29(3):234-241. [144] Chou C P, Hannaford B. Static and dynamic characteristics of McKibben pneumatic artificial muscles[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1994:281-286. [145] Gopura R A R C, Bandara D S V, Kiguchi K, et al. Developments in hardware systems of active upper-limb exoskeleton robots:A review[J]. Robotics and Autonomous Systems, 2016, 75(B):203-220. [146] 赵新刚,谈晓伟,张弼.柔性下肢外骨骼机器人研究进展及关键技术分析[J].机器人, 2020, 42(3):365-384. Zhao X G, Tan X W, Zhang B. Development of soft lower extremity exoskeleton and its key technologies:A survey[J]. Robot, 2020, 42(3):365-384. [147] Lenzi T, de Rossi S M M, Vitiello N, et al. Intention-based EMG control for powered exoskeletons[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(8):2180-2190. [148] Kao P C, Lewis C L, Ferris D P. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton[J]. Journal of Biomechanics, 2010, 43(2):203-209. [149] Ferris D P, Gordon K E, Sawicki G S, et al. An improved powered ankle-foot orthosis using proportional myoelectric control[J]. Gait & Posture, 2006, 23(4):425-428. [150] Donati A R C, Shokur S, Morya E, et al. Long-term training with a brain-machine interface-based gait protocol induces partial neurological recovery in paraplegic patients[J]. Scientific Reports, 2016, 6. DOI:10.1038/srep30383. [151] Liu D, Chen W, Pei Z, et al. A brain-controlled lower-limb exoskeleton for human gait training[J]. Review of Scientific Instruments, 2017, 88(10). DOI:10.1063/1.5006461. [152] Kwak N S, Müller K R, Lee S W. A lower limb exoskeleton control system based on steady state visual evoked potentials[J]. Journal of Neural Engineering, 2015, 12(5). DOI:10.1088/1741-2560/12/5/056009. [153] Xu R, Jiang N, Mrachacz-Kersting N, et al. A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(7):2092-2101. [154] Jin X, Cui X, Agrawal S K. Design of a cable-driven active leg exoskeleton (C-ALEX) and gait training experiments with human subjects[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:5578-5583. [155] Harib O, Hereid A, Agrawal A, et al. Feedback control of an exoskeleton for paraplegics:Toward robustly stable hands-free dynamic walking[J]. IEEE Control Systems Magazine, 2018, 38(6):61-87. [156] Sanz-Merodio D, Cestari M, Arevalo J C, et al. Control motion approach of a lower limb orthosis to reduce energy consumption[J]. International Journal of Advanced Robotic Systems, 2012, 9(6). DOI:10.5772/51903. [157] Kawamoto H, Taal S, Niniss H, et al. Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2010:462-466. [158] Tsukahara A, Kawanishi R, Hasegawa Y, et al. Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL[J]. Advanced Robotics, 2010, 24(11):1615-1638. [159] Nakamura T, Saito K, Wang Z D, et al. Realizing model-based wearable antigravity muscles support with dynamics terms[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2005:2694-2699. [160] Hyon S H, Morimoto J, Matsubara T, et al. XoR:Hybrid drive exoskeleton robot that can balance[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2011:3975-3981. [161] Morimoto J, Noda T, Hyon S H. Extraction of latent kinematic relationships between human users and assistive robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:3909-3915. [162] Liu L, Leonhardt S, Ngo C, et al. Impedance-controlled variable stiffness actuator for lower limb robot applications[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(2):991-1004. [163] 胡进,侯增广,陈翼雄,等.下肢康复机器人及其交互控制方法[J].自动化学报, 2014, 40(11):2377-2390. Hu J, Hou Z G, Chen Y X, et al. Lower limb rehabilitation robots and interactive control methods[J]. Acta Automatica Sinica, 2014, 40(11):2377-2390. [164] Chinimilli P T, Qiao Z, Sorkhabadi S M R, et al. Automatic virtual impedance adaptation of a knee exoskeleton for personalized walking assistance[J]. Robotics and Autonomous Systems, 2019, 114:66-76. [165] Naghavi N, Akbarzadeh A, Tahamipour-Z S M, et al. Assistas-needed control of a hip exoskeleton based on a novel strength index[J]. Robotics and Autonomous Systems, 2020, 134. DOI:10.1016/j.robot.2020.103667. [166] 张玉明,吴青聪,陈柏,等.下肢软质康复外骨骼机器人的模糊神经网络阻抗控制[J].机器人, 2020, 42(4):477-484,493. Zhang Y M, Wu Q C, Chen B, et al. Fuzzy neural network impedance control of soft lower limb rehabilitation exoskeleton robot[J]. Robot, 2020, 42(4):477-484,493. [167] Aguirre-Ollinger G, Colgate J E, Peshkin M A, et al. Design of an active one-degree-of-freedom lower-limb exoskeleton with inertia compensation[J]. International Journal of Robotics Research, 2011, 30(4):486-499. [168] Karavas N, Ajoudani A, Tsagarakis N, et al. Tele-impedance based assistive control for a compliant knee exoskeleton[J]. Robotics and Autonomous Systems, 2015, 73:78-90.