Advances and Key Techniques of Percutaneous Puncture Robots for Thorax and Abdomen
DUAN Xingguang1,2, WEN Hao1,2, HE Rui1,2, LI Xuesong3, QIU Jianxing3
1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China; 2. Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China; 3. Peking University First Hospital, Beijing 100035, China
Abstract:In order to promote the research and development of percutaneous puncture robots for thorax and abdomen in China, the research status of percutaneous puncture robots at home and abroad is reviewed. The key technologies involved in percutaneous puncture robots, such as operative area information perception, flexible needle puncture, motion planning, master-slave control, and safe interaction control, are discussed and analyzed. On the basis of summarizing the research results and analyzing the key technologies, the development trends and challenges of percutaneous puncture robots for thorax and abdomen in the future are pointed out.
[1] 郑荣寿,孙可欣,张思维,等. 2015年中国恶性肿瘤流行情况分析[J].中华肿瘤杂志, 2019, 41(1):19-28. Zheng R S, Sun K X, Zhang S W, et al. Report of cancer epidemiology in China, 2015[J]. Chinese Journal of Oncology, 2019, 41(1):19-28. [2] 郑荣寿,顾秀瑛,李雪婷,等. 2000-2014年中国肿瘤登记地区癌症发病趋势及年龄变化分析[J].中华预防医学杂志, 2018, 52(6):593-600. Zheng R S, Gu X Y, Li X T, et al. Analysis on the trend of cancer incidence and age change in cancer registry areas of China, 2000 to 2014[J]. Chinese Journal of Preventive Medicine, 2018, 52(6):593-600. [3] Vos T, Abajobir A A, Abate K H, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990-2016:A systematic analysis for the Global Burden of Disease Study 2016[J]. The Lancet, 2017, 390(10100):1211-1259. [4] Howlader N, Noone A M, Krapcho M, et al. SEER cancer statistics review, 1975-2016[EB/OL]. (2020-04-09)[2020-12-31]. https://seer.cancer.gov/csr/19752016/. [5] Siegel R L, Miller K D, Goding Sauer A, et al. Colorectal cancer statistics, 2020[J]. CA:A Cancer Journal for Clinicians, 2020, 70(3):145-164. [6] The National Lung Screening Trial Research Team. Reduced lung cancer mortality with low-dose computed tomographic screening[J]. The New England Journal of Medicine, 2011, 365(5):395-409. [7] Taylor A J, Xu S, Wood B J, et al. Origami lesion-targeting device for CT-guided interventions[J]. Journal of Imaging, 2019, 5(2). DOI:10.3390/jimaging5020023. [8] Rueda M A, Riga C T, Hamady M S. Robotics in interventional radiology:Past, present, and future[J]. The Arab Journal of Interventional Radiology, 2018, 2(2):56-63. [9] Ohno Y, Hatabu H, Takenaka D, et al. CT-guided transthoracic needle aspiration biopsy of small (620 mm) solitary pulmonary nodules[J]. American Journal of Roentgenology, 2003, 180(6):1665-1669. [10] Koethe Y, Xu S, Velusamy G, et al. Accuracy and efficacy of percutaneous biopsy and ablation using robotic assistance under computed tomography guidance:A phantom study[J]. European Radiology, 2014, 24(3):723-730. [11] Perez R E, Schwaitzberg S D. Robotic surgery:Finding value in 2019 and beyond[J]. Annals of Laparoscopic and Endoscopic Surgery, 2019, 4. DOI:10.21037/ales.2019.05.02/. [12] Tacher V, de Baere T. Robotic assistance in interventional radiology:Dream or reality?[J]. European Radiology, 2020, 30(2):925-926. [13] 赵新刚,杨唐文,韩建达,等.机器人辅助针穿刺技术[J].科学通报, 2013, 58(S2):20-27. Zhao X G, Yang T W, Han J D, et al. A review on the robotassisted needle puncture technology[J]. Chinese Science Bulletin, 2013, 58(S2):20-27. [14] Kettenbach J, Kronreif G. Robotic systems for percutaneous needle-guided interventions[J]. Minimally Invasive Therapy & Allied Technologies, 2015, 24(1):45-53. [15] Arnolli M M, Hanumara N C, Franken M, et al. An overview of systems for CT-and MRI-guided percutaneous needle placement in the thorax and abdomen[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2015, 11(4):458-475. [16] Kulkarni P, Sikander S, Biswas P, et al. Review of robotic needle guide systems for percutaneous intervention[J]. Annals of Biomedical Engineering, 2019, 47(12):2489-2513. [17] Hiraki T, Kamegawa T, Matsuno T, et al. Zerobot® A remotecontrolled robot for needle insertion in CT-guided interventional radiology developed at Okayama University[J]. Acta Medica Okayama, 2018, 72(6):539-546. [18] Hiraki T, Kamegawa T, Matsuno T, et al. Robotic needle insertion during computed tomography fluoroscopy-guided biopsy:Prospective first-in-human feasibility trial[J]. European radiology, 2020, 30(2):927-933. [19] Tovar-Arriaga S, Tita R, Pedraza-Ortega J C, et al. Development of a robotic FD-CT-guided navigation system for needle placement-Preliminary accuracy tests[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7(2):225-236. [20] 孙银山.基于三维超声图像的穿刺手术机器人辅助系统研究[D].哈尔滨:哈尔滨工业大学, 2011. Sun Y S. Study on robot-assisted system for percutaneous surgery based on 3D ultrasound images[D]. Harbin:Harbin Institute of Technology, 2011. [21] Zhou Y, Thiruvalluvan K, Krzeminski L, et al. CT-guided robotic needle biopsy of lung nodules with respiratory motionexperimental system and preliminary test[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2013, 9(3):317-330. [22] Zhou G, Chen X Q, Niu B L, et al. Intraoperative localization of small pulmonary nodules to assist surgical resection:A novel approach using a surgical navigation puncture robot system[J]. Thoracic Cancer, 2020, 11(1):72-81. [23] Won H J, Kim N, Kim G B, et al. Validation of a CT-guided intervention robot for biopsy and radiofrequency ablation:Experimental study with an abdominal phantom[J]. Diagnostic and Interventional Radiology, 2017, 23(3):233-237. [24] Duan X G, Bian G B, Zhao H H, et al. A medical robot for needle placement therapy in liver cancer[J]. Journal of Zhejiang University:Science A, 2010, 11(4):263-269. [25] Stoianovici D, Cleary K, Patriciu A, et al. AcuBot:A robot for radiological interventions[J]. IEEE Transactions on Robotics and Automation, 2003, 19(5):927-93. [26] Cleary K, Watson V, Lindisch D, et al. Precision placement of instruments for minimally invasive procedures using a "needle driver" robot[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2005, 1(2):40-47. [27] Melzer A, Gutmann B, Remmele T, et al. INNOMOTION for percutaneous image-guided interventions[J]. IEEE Engineering in Medicine and Biology Magazine, 2008, 27(3):66-73. [28] Arnolli M M, Buijze M, Franken M, et al. System for CT-guided needle placement in the thorax and abdomen:A design for clinical acceptability, applicability and usability[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2018, 14(1). DOI:10.1002/rcs.1877. [29] Martinez R M, Ptacek W, Schweitzer W, et al. CT-guided, minimally invasive, postmortem needle biopsy using the B-Rob II needle-positioning robot[J]. Journal of Forensic Sciences, 2014, 59(2):517-521. [30] Maurin B, Bayle B, Piccin O, et al. A patient-mounted robotic platform for CT-scan guided procedures[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(10):2417-2425. [31] Walsh C J, Hanumara N C, Slocum A H, et al. A patientmounted, telerobotic tool for CT-guided percutaneous interventions[J]. Journal of Medical Devices, 2008, 2(1). DOI:10. 1115/1.2902854. [32] Hata N, Song S E, Olubiyi O, et al. Body-mounted robotic instrument guide for image-guided cryotherapy of renal cancer[J]. Medical Physics, 2016, 43(2):843-853. [33] Hungr N, Bricault I, Cinquin P, et al. Design and validation of a CT-and MRI-guided robot for percutaneous needle procedures[J]. IEEE Transactions on Robotics, 2016, 32(4):973-987. [34] Patel N A, Yan J W, Levi D, et al. Body-mounted robot for image-guided percutaneous interventions:Mechanical design and preliminary accuracy evaluation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2018:1443-1448. [35] Musa M J, Sharma K, Cleary K, et al. Respiratory compensated robot for liver cancer treatment:Design, fabrication, and benchtop characterization[J]. IEEE/ASME Transactions on Mechatronics, 2021. DOI:10.1109/TMECH.2021.3062984. [36] Taguchi K, Hamamoto S, Kato T, et al. Robot-assisted fluoroscopy-guided renal puncture for endoscopic combined intrarenal surgery:A pilot single-centre clinical trial[J]. BJU International, 2021, 127(3):307-310. [37] Taguchi K, Hamamoto S, Okada A, et al. Robot-assisted fluoroscopy versus ultrasound-guided renal access for nephrolithotomy:A phantom model benchtop study[J]. Journal of Endourology, 2019, 33(12):987-994. [38] Arnold O, Borodets E. Automated insertion device:US16/303536[P]. 2019-09-26. [39] Roth I, Shochat M, Levin C. Adjustable registration frame:US10806523[P]. 2020-10-20. [40] Shochat M. Dynamic planning method for needle insertion:US10245110[P]. 2019-04-02. [41] 周琼.呼吸门控系统在肺癌放射治疗中的应用研究[D].衡阳:南华大学, 2015. Zhou Q. The study of respiratory gating on lung cancer radiotherapy[D]. Hengyang:University of South China, 2015. [42] Denissova S I, Yewondwossen M H, Andrew J W, et al. A gated deep inspiration breath-hold radiation therapy technique using a linear position transducer[J]. Journal of Applied Clinical Medical Physics, 2005, 6(1):61-70. [43] Corbishley P, Rodríguez-Villegas E. Breathing detection:Towards a miniaturized, wearable, battery-operated monitoring system[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(1):196-204. [44] Anzidei M, R Argiro, Porfiri A, et al. Preliminary clinical experience with a dedicated interventional robotic system for CTguided biopsies of lung lesions:A comparison with the conventional manual technique[J]. European Radiology, 2015, 25:1310-1316. [45] Li R, Lewis J H, Cervino L I, et al. 4D CT sorting based on patient internal anatomy[J]. Physics in Medicine & Biology, 2009, 54(15). DOI:10.1088/0031-9155/54/15/012. [46] Nehmeh S A, Erdi Y E, Pan T, et al. Four-dimensional (4D) PET/CT imaging of the thorax:4D PET/CT[J]. Medical Physics, 2004, 31(12):3179-3186. [47] Wink N M, Panknin C, Solberg T D. Phase versus amplitude sorting of 4D-CT data[J]. Journal of Applied Clinical Medical Physics, 2006, 7(1):77-85. [48] Remmert G, Biederer J, Lohberger F, et al. Four-dimensional magnetic resonance imaging for the determination of tumour movement and its evaluation using a dynamic porcine lung phantom[J]. Physics in Medicine & Biology, 2007, 52(18). DOI:10.1088/0031-9155/52/18/N02. [49] Tong Y, Udupa J K, Ciesielski K C, et al. Retrospective 4D MR image construction from free-breathing slice acquisitions:A novel graph-based approach[J]. Medical Image Analysis, 2017, 35:345-359. [50] Saito H, Mitsubayashi K, Togawa T. Detection of needle puncture to blood vessel by using electric conductivity of blood for automatic blood sampling[J]. Sensors and Actuators A:Physical, 2006, 125(2):446-450. [51] Lehmann T, Rossa C, Sloboda R, et al. Needle path control during insertion in soft tissue using a force-sensor-based deflection estimator[C]//IEEE International Conference on Advanced Intelligent Mechatronics. Piscataway, USA:IEEE, 2016:1174-1179. [52] Shang W J, Su H, Li G, et al. Teleoperation system with hybrid pneumatic-piezoelectric actuation for MRI-guided needle insertion with haptic feedback[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:4092-4098. [53] Gahler M C. Forces in needle interventions:Measuring tip forces[D]. Delft, Netherlands:Delft University of Technology, 2012. [54] Beekmans S, Lembrechts T, van den Dobbelsteen J, et al. Fiberoptic Fabry-Pérot interferometers for axial force sensing on the tip of a needle[J]. Sensors, 2017, 17(1). DOI:10.3390/s17010038. [55] Mehrtash A, Ghafoorian M, Pernelle G, et al. Automatic needle segmentation and localization in MRI with 3-D convolutional neural networks:Application to MRI-targeted prostate biopsy[J]. IEEE Transactions on Medical Imaging, 2019, 38(4):1026-1036. [56] Gerboni G, Greer J D, Laeseke P F, et al. Highly articulated robotic needle achieves distributed ablation of liver tissue[J]. IEEE Robotics and Automation Letters, 2017, 2(3):1367-1374. [57] Park I, Kim H K, Chung W K, et al. Deep learning based realtime OCT image segmentation and correction for robotic needle insertion systems[J]. IEEE Robotics and Automation Letters, 2020, 5(3):4517-4524. [58] Rucker D C, Jones B A, Webster III R J. A geometrically exact model for externally loaded concentric-tube continuum robots[J]. IEEE Transactions on Robotics, 2010, 26(5):769-780. [59] Park Y L, Elayaperumal S, Daniel B, et al. Real-time estimation of 3-D needle shape and deflection for MRI-guided interventions[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(6):906-915. [60] 李勐.穿刺手术机器人穿刺针-软组织交互机理、规划控制及感知技术研究[D].北京:北京理工大学, 2017. Li M. Research on needle-soft tissue interaction, path planning and sensor integration of robotically assisted needle placement[D]. Beijing:Beijing Institute of Technology, 2017. [61] Abayazid M, Kemp M, Misra S. 3D flexible needle steering in soft-tissue phantoms using fiber Bragg grating sensors[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:5843-5849. [62] Simone C, Okamura A M. Modeling of needle insertion forces for robot-assisted percutaneous therapy[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2002:2085-2091. [63] Okamura A M, Simone C, O'leary M D. Force modeling for needle insertion into soft tissue[J]. IEEE Transactions on Biomedical Engineering, 2004, 51(10):1707-1716. [64] van Gerwen D J, Dankelman J, van den Dobbelsteen J J. Needletissue interaction forces-A survey of experimental data[J]. Medical Engineering & Physics, 2012, 34(6):665-680. [65] Glozman D, Shoham M. Flexible needle steering and optimal trajectory planning for percutaneous therapies[C]//International Conference on Medical Image Computing and ComputerAssisted Intervention. Berlin, Germany:Springer, 2004:137-144. [66] Glozman D, Shoham M. Image-guided robotic flexible needle steering[J]. IEEE Transactions on Robotics, 2007, 23(3):459-467. [67] Mahvash M, Dupont P E. Fast needle insertion to minimize tissue deformation and damage[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2009:3097-3102. [68] DiMaio S P, Salcudean S E. Needle insertion modeling and simulation[J]. IEEE Transactions on Robotics and Automation, 2003, 19(5):864-875. [69] DiMaio S P, Salcudean S E. Needle steering and model-based trajectory planning[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany:Springer, 2003:33-40. [70] Misra S, Macura K J, Ramesh K T, et al. The importance of organ geometry and boundary constraints for planning of medical interventions[J]. Medical Engineering & Physics, 2009, 31(2):195-206. [71] Kobayashi Y, Onishi A, Hoshi T, et al. Development and validation of a viscoelastic and nonlinear liver model for needle insertion[J]. International Journal of Computer Assisted Radiology and Surgery, 2009, 4(1):53-63. [72] Zhu B, Gu L. A hybrid deformable model for real-time surgical simulation[J]. Computerized Medical Imaging and Graphics, 2012, 36(5):356-365. [73] 郑浩峻,姚望,高德东,等.机器人辅助柔性针穿刺路径的悬臂梁预测模型[J].清华大学学报(自然科学版), 2011, 51(8):1078-1083. Zheng H J, Yao W, Gao D D, et al. Projecting beam model for robot-assisted flexible needle insertion[J]. Journal of Tsinghua University (Science and Technology), 2011, 51(8):1078-1083. [74] Abolhassani N, Patel R, Moallem M. Needle insertion into soft tissue:A survey[J]. Medical Engineering & Physics, 2007, 29(4):413-431. [75] 杜海艳,张永德,赵燕江,等.斜尖针穿刺软组织建模及针尖轨迹预测[J].仪器仪表学报, 2015, 36(8):1744-1751. Du H Y, Zhang Y D, Zhao Y J, et al. Modeling of bevel-tipped needle inserting into soft tissue and estimation of needle tip trajectory[J]. Chinese Journal of Scientific Instrument, 2015, 36(8):1744-1751. [76] Webster III R J, Kim J S, Cowan N J, et al. Nonholonomic modeling of needle steering[J]. International Journal of Robotics Research, 2006, 25(5-6):509-525. [77] Kallem V, Cowan N J. Image guidance of flexible tip-steerable needles[J]. IEEE Transactions on Robotics, 2009, 25(1):191-196. [78] Reed K B, Kallem V, Alterovitz R, et al. Integrated planning and image-guided control for planar needle steering[C]//2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA:IEEE, 2008:819-824. [79] Duchemin G, Maillet P, Poignet P, et al. A hybrid position/force control approach for identification of deformation models of skin and underlying tissues[J]. IEEE Transactions on Biomedical Engineering, 2005, 52(2):160-170. [80] Engh J A, Podnar G, Khoo S Y, et al. Flexible needle steering system for percutaneous access to deep zones of the brain[C]//IEEE 32nd Annual Northeast Bioengineering Conference. Piscataway, USA:IEEE, 2006:103-104. [81] Engh J A, Podnar G, Kondziolka D, et al. Toward effective needle steering in brain tissue[C]//International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2006:559-562. [82] Sears P, Dupont P. A steerable needle technology using curved concentric tubes[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:2850-2856. [83] Webster III R J, Romano J M, Cowan N J. Mechanics of precurved-tube continuum robots[J]. IEEE Transactions on Robotics, 2008, 25(1):67-78. [84] Rucker D C, Webster III R J, Chirikjian G S, et al. Equilibrium conformations of concentric-tube continuum robots[J]. International Journal of Robotics Research, 2010, 29(10):1263-1280. [85] Rucker D C, Jones B A, Webster III R J. A geometrically exact model for externally loaded concentric-tube continuum robots[J]. IEEE Transactions on Robotics, 2010, 26(5):769-780. [86] Rucker D C, Das J, Gilbert H B, et al. Sliding mode control of steerable needles[J]. IEEE Transactions on Robotics, 2013, 29(5):1289-1299. [87] Torabi M, Gupta R, Walsh C J. Compact robotically steerable image-guided instrument for multi-adjacent-point (MAP) targeting[J]. IEEE Transactions on Robotics, 2014, 30(4):802-815. [88] Roesthuis R J, van de Berg N, van den Dobbelsteen J J, et al. Modeling and steering of a novel actuated-tip needle through a soft-tissue simulant using fiber Bragg grating sensors[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:2283-2289. [89] Ryu S C, Quek Z F, Koh J S, et al. Design of an optically controlled MR-compatible active needle[J]. IEEE Transactions on Robotics, 2015, 31(1):1-11. [90] Ko S Y, Frasson L, Rodriguez y Baena F. Closed-loop planar motion control of a steerable probe with a "programmable bevel" inspired by nature[J]. IEEE Transactions on Robotics, 2011, 27(5):970-983. [91] Watts T, Secoli R, Rodriguez y Baena F. A mechanics-based model for 3-D steering of programmable bevel-tip needles[J]. IEEE Transactions on Robotics, 2019, 35(2):371-386. [92] Duindam V, Xu J, Alterovitz R, et al. Three-dimensional motion planning algorithms for steerable needles using inverse kinematics[J]. International Journal of Robotics Research, 2010, 29(7):789-800. [93] Li P, Jiang S, Yang J, et al. A combination method of artificial potential field and improved conjugate gradient for trajectory planning for needle insertion into soft tissue[J]. Journal of Medical and Biological Engineering, 2014, 34(6):568-573. [94] Patil S, Alterovitz R. Interactive motion planning for steerable needles in 3D environments with obstacles[C]//3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA:IEEE, 2010:893-899. [95] Park W, Liu Y, Zhou Y, et al. Kinematic state estimation and motion planning for stochastic nonholonomic systems using the exponential map[J]. Robotica, 2008, 26:419-434. [96] Alterovitz R, Branicky M, Goldberg K. Motion planning under uncertainty for image-guided medical needle steering[J]. International Journal of Robotics Research, 2008, 27(11-12):1361-1374. [97] 王田苗,张晓会,张学斌,等.腹腔镜增强现实导航的研究进展综述[J].机器人, 2019, 41(1):124-136. Wang T M, Zhang X H, Zhang X B, et al. Research progresses in laparoscopic augmented reality navigation[J]. Robot, 2019, 41(1):124-136. [98] Widmann G, Schullian P, Haidu M, et al. Targeting accuracy of CT-guided stereotaxy for radiofrequency ablation of liver tumours.[J]. Minimally Invasive Therapy & Allied Technologies, 2011, 20(4):218-225. [99] Tsumura R, Kakima K, Iwata H. Intermittent insertion control method with fine needle for adapting lung deformation due to breathing motion[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2020:3192-3199. [100] Atashzar S F, Khalaji I, Shahbazi M, et al. Robot-assisted lung motion compensation during needle insertion[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:1682-1687. [101] Marek W, Joseph S, Katie G, et al. Closed-loop active compensation for needle deflection and target shift during cooperatively controlled robotic needle insertion[J]. Annals of Biomedical Engineering, 2018, 46:1-13. [102] Zheng L, Wu H, Yang L, et al. A novel respiratory follow-up robotic system for thoracic-abdominal puncture[J]. IEEE Transactions on Industrial Electronics, 2020, 68(3):2368-2378. [103] 孔康.小型化微创手术机器人设计方法与运动映射策略研究[D].天津:天津大学, 2017. Kong K. Design method and motion mapping strategy of miniaturized minimally invasive surgery robot[D]. Tianjin:Tianjin University, 2017. [104] Bassan H, Talasaz A, Patel R V. Design and characterization of a 7-DOF haptic interface for a minimally invasive surgery test-bed[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2009:4098-4103. [105] Mamdouh M, Ramadan A A. Development of a teleoperation system with a new workspace spanning technique[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2012:1570-1575. [106] Salcudean S E, Wong N M, Hollis R L. Design and control of a force-reflecting teleoperation system with magnetically levitated master and wrist[J]. IEEE Transactions on Robotics and Automation, 1995, 11(6):844-858. [107] Conti F, Khatib O. Spanning large workspaces using small haptic devices[C]//1st Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Piscataway, USA:IEEE, 2005:183-188. [108] Yokokohji Y, Yoshikawa T. Bilateral control of master-slave manipulators for ideal kinesthetic coupling-Formulation and experiment[J]. IEEE Transactions on Robotics and Automation, 1994, 10(5):605-620. [109] Ryu J H, Song J, Kwon D S. A nonlinear friction compensation method using adaptive control and its practical application to an in-parallel actuated 6-DOF manipulator[J]. Control Engineering Practice, 2001, 9(2):159-167. [110] Kuchenbecker K J, Niemeyer G. Modeling induced master motion in force-reflecting teleoperation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2005:348-353. [111] Gao X, Wang Y F, Song J Z, et al. Research of a new 6-DOF force feedback hand controller system[J]. Journal of Robotics, 2014. DOI:10.1155/2014/646574. [112] Takhmar A, Polushin I G, Talasaz A, et al. Cooperative teleoperation with projection-based force reflection for MIS[J]. IEEE Transactions on Control Systems Technology, 2015, 23(4):1411-1426. [113] Park H, Lee J M. Adaptive impedance control of a haptic interface[J]. Mechatronics, 2004, 14(3):237-253. [114] Yoon S M, Kim W J, Lee M C. Design of bilateral control for force feedback in surgical robot[J]. International Journal of Control, Automation, and Systems, 2015, 13(4):916-925. [115] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots[M]//Autonomous Robot Vehicles. New York, USA:Springer, 1986:396-404. [116] Ogren P, Egerstedt M, Hu X. Reactive mobile manipulation using dynamic trajectory tracking[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2000:3473-3478. [117] Brock O, Khatib O. Elastic strips:A framework for motion generation in human environments[J]. International Journal of Robotics Research, 2002, 21(12):1031-1052. [118] Kulic D N, Croft E. Pre-collision safety strategies for human-robot interaction[J]. Autonomous Robots, 2007, 22(2):149-164. [119] Kulic D, Croft E A. Safe planning for human-robot interaction[J]. Journal of Robotic Systems, 2005, 22(7):383-396. [120] Flacco F, Kröger T, de Luca A, et al. A depth space approach to human-robot collision avoidance[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:338-345. [121] Cirillo A, Ficuciello F, Natale C, et al. A conformable force/tactile skin for physical human-robot interaction[J]. IEEE Robotics and Automation Letters, 2016, 1(1):41-48. [122] Phan S, Quek Z F, Shah P, et al. Capacitive skin sensors for robot impact monitoring[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2011:2992-2997. [123] Hughes D, Lammie J, Correll N. A robotic skin for collision avoidance and affective touch recognition[J]. IEEE Robotics and Automation Letters, 2018, 3(3):1386-1393. [124] Wang W L, Tan Y J, Yao H, et al. A neuro-inspired artificial peripheral nervous system for scalable electronic skins[J]. Science Robotics, 2019, 4(32). DOI:10.1126/scirobotics. aax2198. [125] Boutry C M, Negre M, Jorda M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics[J]. Science Robotics, 2018, 3(24). DOI:10.1126/scirobotics.aau6914. [126] Yan Y C, Hu Z, Yang Z B, et al. Soft magnetic skin for superresolution tactile sensing with force self-decoupling[J]. Science Robotics, 2021, 6(51). DOI:10.1126/scirobotics.abc8801. [127] Haddadin S, de Luca A, Albu-Schaffer A. Robot collisions:A survey on detection, isolation, and identification[J]. IEEE Transactions on Robotics, 2017, 33(6):1292-1312. [128] Lee S-D, Kim M-C, Song J-B. Sensorless collision detection for safe human-robot collaboration[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2015:2392-2397. [129] Lee S D, Song J B. Sensorless collision detection based on friction model for a robot manipulator[J]. International Journal of Precision Engineering and Manufacturing, 2016, 17(1):11-17. [130] Indri M, Trapani S. Framework for static and dynamic friction identification for industrial manipulators[J]. IEEE/ASME Transactions on Mechatronics, 2020, 25(3):1589-1599. [131] Gaz C, Cognetti M, Oliva A, et al. Dynamic identification of the Franka Emika Panda robot with retrieval of feasible parameters using penalty-based optimization[J]. IEEE Robotics and Automation Letters, 2019, 4(4):4147-4154. [132] de Luca A, Albu-Schaffer A, Haddadin S, et al. Collision detection and safe reaction with the DLR-III lightweight manipulator arm[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:1623-1630. [133] Haddadin S. Towards safe robots:Approaching Asimov's 1st law[M]. Berlin, Germany:Springer, 2014. [134] de Luca A, Mattone R. Sensorless robot collision detection and hybrid force/motion control[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2005:999-1004. [135] de Luca A, Mattone R. Actuator failure detection and isolation using generalized momenta[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2003:634-639. [136] Haddadin S, Albu-Schaffer A, de Luca A, et al. Collision detection and reaction:A contribution to safe physical humanrobot interaction[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2008:3356-3363.