徐铃辉, 杨巍, 杨灿军, 张继宇, 王天. 基于运动预测的髋关节外骨骼实时助力控制[J]. 机器人, 2021, 43(4): 473-483.DOI: 10.13973/j.cnki.robot.200557.
XU Linghui, YANG Wei, YANG Canjun, ZHANG Jiyu, WANG Tian. Real-time Assistance Control of Hip Exoskeleton Based on Motion Prediction. ROBOT, 2021, 43(4): 473-483. DOI: 10.13973/j.cnki.robot.200557.
Abstract:To satisfy the daily walking needs of the individuals with weak muscle strength in lower limbs, a wearable hip exoskeleton is designed to realize accurate perception of the human daily walking intentions and real-time assistance of hip flexion/extension. A motion prediction model based on hybrid oscillators is proposed to realize accurate assistance timing in the frequent stop-and-go condition and no-delay assistance for regular walking gait. Based on the motion prediction model, human walking gait prediction and gait cycle segmentation are realized by converting gait data from the time domain to the phase domain. The phase angle is used to calculate the assistance torque online, and thus the assistance control of hip exoskeleton is implemented. To eliminate the jitter caused by large assistance torque, the rigid connection between the inertial measurement unit and the hip exoskeleton thigh link is decoupled. Treadmill experiments and free walking experiments are conducted to verify the adaptability of the hip exoskeleton to sudden or uniform speed changes, and the effectiveness in stop-and-go switching or free walking conditions respectively. Meanwhile, the human-machine interaction force is detected and compared to verify that the adaptive oscillator mode with prediction ability can provide more compliant walking assistance. The experimental results show that the real-time assistance control based on the hybrid oscillators model can generate the assistance for non-periodic gaits in stop-and-go condition and no-delay assistance for quasi-periodic gait in regular walking condition.
[1] DeVita P, Hortobagyi T.Age causes a redistribution of joint torques and powers during gait[J]. Journal of Applied Physiology, 2000, 88(5): 1804-1811. [2] JudgeRoy J O, Davis B, Õunpuu S.Step length reductions in advanced age: The role of ankle and hip kinetics[J]. The Journals of Gerontology: Series A, 1996, 51A(6): M303-M312. [3] Brenner L.Exploring the psychosocial impact of Ekso bionics technology[J]. Archives of Physical Medicine and Rehabilitation, 2016, 97(10). DOI: 10.1016/j.apmr.2016.08.353. [4] Sankai Y.HAL: Hybrid assistive limb based on cybernics[C]// 13th International Symposium on Robotics Research. Berlin, Germany: Springer, 2010: 25-34. [5] Goffer A, Tamari O.Locomotion assisting apparatus with integrated tilt sensor: US10849816[P]. 2016-04-22. [6] 杨巍, 张秀峰, 杨灿军, 等.基于人机5杆模型的下肢外骨骼系统设计[J].浙江大学学报(工学版), 2014, 48(3):430-435,444. Yang W, Zhang X F, Yang C J, et al. Design of a lower extremity exoskeleton based on 5-bar human machine model[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(3): 430-435,444. [7] 徐文霞, 黄剑, 晏箐阳, 等.兼具柔顺与安全的助行机器人运动控制研究[J].自动化学报, 2016, 42(12):1859-1873. Xu W X, Huang J, Yan Q Y, et al. Research on walking-aid robot motion control with both compliance and safety[J]. Acta Automatica Sinica, 2016, 42(12): 1859-1873. [8] 张玉明, 吴青聪, 陈柏, 等.下肢软质康复外骨骼机器人的模糊神经网络阻抗控制[J].机器人, 2020, 42(4):477-484,493. Zhang Y M, Wu Q C, Chen B, et al. Fuzzy neural network impedance control of soft lower limb rehabilitation exoskeleton robot[J]. Robot, 2020, 42(4): 477-484,493. [9] 赵新刚, 谈晓伟, 张弼.柔性下肢外骨骼机器人研究进展及关键技术分析[J].机器人, 2020, 42(3):365-384. Zhao X G, Tan X W, Zhang B. Development of soft lower extremity exoskeleton and its key technologies: A survey[J]. Robot, 2020, 42(3): 365-384. [10] Lim B, Kim K, Lee J, et al.An event-driven control to achieve adaptive walking assist with gait primitives[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2015: 5870-5875. [11] Walsh C J, Pasch K, Herr H.An autonomous, underactuated exoskeleton for load-carrying augmentation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2006: 1410-1415. [12] Jang J, Kim K, Lee J, et al.Online gait task recognition algorithm for hip exoskeleton[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2015: 5327-5332. [13] Ronsse R, Koopman B, Vitiello N, et al.Oscillator-based walking assistance: A model-free approach[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA: IEEE, 2011: 1-6. [14] Zhang X, Hashimoto M.Inhibitory connections between neural oscillators for a robotic suit[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2011: 4182-4187. [15] Sugar T G, Bates A, Holgate M, et al.Limit cycles to enhance human performance based on phase oscillators[J]. Journal of Mechanisms and Robotics, 2015, 7(1). DOI: 10.1115/1. 4029336. [16] Seo K, Hyung S Y, Choi B K, et al.A new adaptive frequency oscillator for gait assistance[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2015: 5565-5571. [17] 杨巍, 杨灿军, 马张翼, 等.基于振荡器的助行外骨骼跟随助力控制研究[J].机电工程, 2019, 36(10):1007-1012, 1026. Yang W, Yang C J, Ma Z Y, et al. Following assistance control of walking assist exoskeleton based on oscillator[J]. Mechanical & Electrical Engineering Magazine, 2019, 36(10): 1007-1012, 1026. [18] Bae J, Siviy C, Rouleau M, et al.A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2018: 2820-2827. [19] Lee S, Kim J, Baker L, et al.Autonomous multi-joint soft exosuit with augmentation-power-based control parameter tuning reduces energy cost of loaded walking[J]. Journal of NeuroEngineering and Rehabilitation, 2018, 15. DOI: 10.1186/ s12984-018-0410-y. [20] Lee S, Karavas N, Quinlivan B T, et al.Autonomous multi-joint soft exosuit for assistance with walking overground[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2018: 2812-2819. [21] Lim B, Jang J, Lee J, et al.Delayed output feedback control for gait assistance and resistance using a robotic exoskeleton[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3521-3528. [22] Lim B, Lee J, Jang J, et al.Delayed output feedback control for gait assistance with a robotic hip exoskeleton[J]. IEEE Transactions on Robotics, 2019, 35(4): 1055-1062. [23] Xue T, Wang Z W, Zhang T, et al.Adaptive oscillator-based robust control for flexible hip assistive exoskeleton[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 3318-3323. [24] de la Fuente J, Subramanian S C, Sugar T G, et al.A robust phase oscillator design for wearable robotic systems[J]. Robotics and Autonomous Systems, 2020, 128. DOI: 10.1016/ j.robot.2020.103514. [25] Zheng E, Manca S, Yan T, et al.Gait phase estimation based on noncontact capacitive sensing and adaptive oscillators[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(10): 2419-2430. [26] Yan T F, Parri A, Ruiz Garate V, et al.An oscillator-based smooth real-time estimate of gait phase for wearable robotics[J]. Autonomous Robots, 2017, 41(3): 759-774. [27] Ronsse R, de Rossi S M M, Vitiello N, et al.Real-time estimate of velocity and acceleration of quasi-periodic signals using adaptive oscillators[J]. IEEE Transactions on Robotics, 2013, 29(3): 783-791. [28] Wu X Y, Ma Y, Yong X, et al.Locomotion mode identification and gait phase estimation for exoskeletons during continuous multilocomotion tasks[J]. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13(1): 45-56. [29] 刘宇霖, 李银波, 卢仁浩, 等.截瘫助行外骨骼髋关节离合式弹性驱动器[J].清华大学学报(自然科学版), 2021, 61(1):42-49. Liu Y L, Li Y B, Lu R H, et al. Clutched elastic actuator to drive a lower limb exoskeleton hip joint for paraplegic patients[J]. Journal of Tsinghua University (Science & Technology), 2021, 61(1): 42-49. [30] Li Y B, Guan X Y, Li Z B, et al.Analysis, design and preliminary evaluation of a parallel elastic actuator for power-efficient walking assistance[J]. IEEE Access, 2020, 8: 88060-88075. [31] Nagarajan U, Aguirre-Ollinger G, Goswami A.Integral admittance shaping for exoskeleton control[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2015: 5641-5648. [32] Giovacchini F, Vannetti F, Fantozzi M, et al.A light-weight active orthosis for hip movement assistance[J]. Robotics and Autonomous Systems, 2015, 73: 123-134.