Abstract:For the upper limb rehabilitative and assisted movement, a pneumatic artificial muscle (PAM) compliantly actuated assistive robot for the elbow joint is developed. The hysteresis and nonlinearity of pneumatic artificial muscles significantly reduce the motion accuracy of the system. The robustness of common hysteresis compensation methods based on offline identification against the variation of the system configuration is low. Therefore, an adaptive hysteresis compensation method is proposed in this paper, which integrates the direct inverse modeling approach and the modified adaptive projection (MAP) algorithm. Based on the direct inverse modeling approach, the Prandtl-Ishlinskii model is utilized to construct the inverse hysteresis model, i.e., the hysteresis compensator. MAP algorithm is used to complete the online parameter identification of the inverse hysteresis model. By the proposed method, the offline modeling and inversion are avoided, and the on-site tuning of the controller parameters in tracking different trajectories is also eliminated. Experimental results demonstrate the effectiveness of the proposed method in hysteresis compensation compared with PID (proportional-integral-derivative) controller and adaptive projection (AP) algorithm. The setting time and overshoot of the transient process are significantly better comparing with the above mentioned methods. The closed-loop system can accurately track different types of trajectories, such as step trajectory and sinusoidal trajectory with a descending amplitude.
[1] 李家霖, 杨洋, 杨铁, 等.外骨骼式遥操作主手设计及主从异构映射算法研究[J].机器人, 2020, 42(6):651-660. Li J L, Yang Y, Yang T, et al. Design of exoskeletal teleoperation master device and research on master-slave isomerism mapping algorithm[J]. Robot, 2020, 42(6): 651-660. [2] Ka D M, Hong C, Toan T H, et al.Minimizing human-exoskeleton interaction force by using global fast sliding mode control[J]. International Journal of Control, Automation and Systems, 2016, 14: 1064-1073. [3] 李翌, 于随然.面向脑卒中恢复期患者的上肢外骨骼主动式力量训练器的设计[J].机械设计与研究, 2019, 35(4):5-10. Li Y, Yu S R. Design of an active force trainer for upper limb exoskeleton for stoke convalescent people[J]. Machine Design & Research, 2019, 35(4): 5-10. [4] Iranzo S, Piedrabuena A, Iordanov D, et al.Ergonomics assessment of passive upper-limb exoskeletons in an automotive assembly plant[J]. Applied Ergonomics, 2020, 87. DOI: 10.1016/j.apergo.2020.103120. [5] Li H B, Guan X R, Li Z, et al. Dynamic analysis and state estimation of wearable extra robotic limbs for physical assistance and load reduction in missile-mounting[C]//The 2020 Spring International Conference on Defence Technology, Journal of Physics: Conference Series. UK: IOP Publishing, 2020. DOI: 10.1088/1742-6596/1507/5/052015. [6] 张沛, 刘鑫, 马如奇.舱外航天服上肢主动助力外骨骼建模与仿真[J].航天医学与医学工程, 2019, 32(4):319-325. Zhang P, Liu X, Ma R Q. Modeling and simulation of active upper limb-assisted exoskeleton in extravehicular spacesuit[J]. Space Medicine & Medical Engineering, 2019, 32(4): 319-325. [7] Kazerooni H, Steger R, Huang L H.Hybrid control of the Berkeley lower extremity exoskeleton (BLEEX)[J]. International Journal of Robotics Research, 2006, 25(5-6): 561-573. [8] Bogue R.Exoskeletons and robotic prosthetics: A review of recent developments[J]. Industrial Robot, 2009, 36(5): 421-427. [9] Dollar A M, Herr H.Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art[J]. IEEE Transactions on Robotics, 2008, 24(1): 144-158. [10] Chen S, Chen Z, Yao B, et al.Adaptive robust cascade force control of 1-DOF hydraulic exoskeleton for human performance augmentation[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 589-600. [11] 宋遒志, 王晓光, 王鑫, 等.多关节外骨骼助力机器人发展现状及关键技术分析[J].兵工学报, 2016, 37(1):172-185. Song Q Z, Wang X G, Wang X, et al. Development of multi-joint exoskeleton-assisted robot and its key technology analysis: An overview[J]. Acta Armamentarii, 2016, 37(1): 172-185. [12] Zoss A, Kazerooni H.Design of an electrically actuated lower extremity exoskeleton[J]. Advanced Robotics, 2006, 20(9): 967-988. [13] Wang W, Chen J Y, Ji Y D, et al.Evaluation of lower leg muscle activities during human walking assisted by an ankle exoskeleton[J]. IEEE Transactions on Industrial Informatics, 2020, 16(11): 7168-7176. [14] Chen J, Liang Z C, Zhu Y H, et al.Towards the exploitation of physical compliance in segmented and electrically actuated robotic legs: A review focused on elastic mechanisms[J]. Sensors, 2019, 19(24). DOI: 10.3390/s19245351. [15] Park Y L, Chen B R, Young D, et al.Bio-inspired active soft orthotic device for ankle foot pathologies[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2011. DOI: 10.1109/IROS.2011.6094933. [16] Takahashi K Z, Lewek M D, Sawicki G S. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke: A feasibility study[J].Journal of NeuroEngineering and Rehabilitation, 2015, 12. DOI: 10.1186/s12984-015-0015-7. [17] Liu Q, Zuo J, Zhu C, et al.Design and control of soft rehabilitation robots actuated by pneumatic muscles: State of the art[J]. Future Generation Computer Systems, 2020, 113: 620-634. [18] 郭盛, 马可, 王向阳.柔性可穿戴康复手套的设计与控制[J].医用生物力学, 2019, 34(6):637-643. Peng G S, Fan X Y, Liu X Y, et al. Design and control of a soft and wearable robotic glove for hand rehabilitation[J]. Journal of Medical Biomechanics, 2019, 34(6): 637-643. [20] Meng W, Liu Q, Zhang M M, et al.Compliance adaptation of an intrinsically soft ankle rehabilitation robot driven by pneumatic muscles[C]//IEEE International Conference on Advanced Intelligent Mechatronics. Piscataway, USA: IEEE, 2017. DOI: 10.1109/AIM.2017.8013999. [21] Gao X F, Sun Y, Hao L N, et al.A new soft pneumatic elbow pad for joint assistance with application to smart campus[J]. IEEE Access, 2018, 6: 38967-38976. [22] 谢胜龙, 刘海涛, 梅江平.气动人工肌肉迟滞—蠕变特性研究现状与进展[J].系统仿真学报, 2018, 30(3):809-823. Xie S L, Liu H T, Mei J P. Achievements and developments of hysteresis and creep of pneumatic artificial muscles[J]. Journal of System Simulation, 2018, 30(3): 809-823. [23] Hassani V, Tjahjowidodo T, Do T N. A survey on hysteresis modeling, identification and control[J]. Mechanical Systems and Signal Processing, 2014, 49(1-2): 209-233. [24] Kuhnen K, Janocha H.Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems[J]. Control and Intelligent Systems, 2001, 29(3): 74-83. [25] Qin Y D, Tian Y L, Zhang D W, et al.A novel direct inverse modeling approach for hysteresis compensation of piezoelectric actuator in feedforward applications[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(3): 981-989. [26] Zou J, Yan P N, Ding N Y, et al.Feedback-cascaded inverse feedforward for viscoelastic creep, hysteresis and cross-coupling compensation in dielectric-elastomer actuated XY stages[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, USA: IEEE, 2020. DOI: 10.1109/AIM43001.2020.9158921. [27] Li Z, Shan J J, Gabbert U.A direct inverse model for hysteresis compensation[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 4173-4181. [28] Qin Y D, Soundararajan R, Jia R R, et al.Direct inverse linearization of piezoelectric actuator's initial loading curve and its applications in full-field optical coherence tomography (FF-OCT)[J]. Mechanical Systems and Signal Processing, 2021, 148. DOI: 10.1016/j.ymssp.2020.107147. [29] Qin Y D, Shirinzadeh B, Tian Y L, et al.Design issues in a decoupled XY stage: Static and dynamics modeling, hysteresis compensation, and tracking control[J]. Sensors and Actuators A: Physical, 2013, 194: 95-105. [30] Zhang Y, Liu H, Ma T, et al.A comprehensive dynamic model for pneumatic artificial muscles considering different input frequencies and mechanical loads[J]. Mechanical Systems and Signal Processing, 2021, 148. DOI: 10.1016/j.ymssp.2020.107133.