毛晨曦, 沈煜年. 爪刺式飞行爬壁机器人的仿生机理与系统设计[J]. 机器人, 2021, 43(2): 246-256.DOI: 10.13973/j.cnki.robot.200120.
MAO Chenxi, SHEN Yunian. Bionics Mechanism and System Design of a Spine-Type Flying and Wall-Climbing Robot. ROBOT, 2021, 43(2): 246-256. DOI: 10.13973/j.cnki.robot.200120.
Abstract:Based on in-depth analysis on bionic principles including landing, perching and crawling of natural animals on unstructured dusty surfaces, the crawling dynamics and contact-impact models for the spine-type flying and wall-climbing robot are established, and the crawling dynamics of the wall-climbing system and the contact-impact dynamic behavior of complete machine are calculated. Using the flexible carbon-fiber rod, the flexible rope and the spine mechanism, self-adaptive grasping and separation between the spine and the wall are achieved. The optimal design of spine-type flying and wall-climbing robot with the ability to fly and crawl on walls is completed, and perching and landing experiments are carried out with the complete machine. By comparing computational results with experimental data, the correctness of the presented dynamic model and the feasibility of the biomimetic design are validated. Through our study, the driving force curve of steering gear for ideal climbing gait is obtained. It is found that buffeting can be suppressed optimally during climbing when the prestressing force of nylon rope is 0.75 N. Meanwhile, the effects of the initial landing speed, the energy conversion and the steering gear lift on landing and perching are analyzed in depth. The results show that the robot can successfully land on the coarse wall surface at an initial speed about 0.9 m/s and a pitch angle about -10°, and the range of initial state for successful landing can be expanded through the coordination of the lift force and the energy conversion of carbon rod.
[1] Rosa G L, Messina M, Muscato G, et al. A low-cost lightweight climbing robot for the inspection of vertical surfaces[J]. Mechatronics, 2002, 12(1): 71-96. [2] Dai Z D, Gorb S N, Schwarz U. Roughness-dependent friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scarabaeidae)[J]. Journal of Experimental Biology, 2002, 205(16): 2479-2488. [3] 胡兵兵,金国庆.一种仿虎甲幼虫的多驱动器软体机器人的设计与制造[J].机器人,2018,40(5):626-633.Hu B B, Jin G Q. Design and fabrication of a multi-actuator soft robot inspired by young tiger beetle[J]. Robot, 2018, 40(5): 626-633. [4] 刘冬琛,王军政,汪首坤,等.一种基于并联 6 自由度结构的电动轮足机器人[J].机器人,2019,41(1):65-74,82.Liu D C, Wang J Z, Wang S K, et al. An electric wheel-foot robot based on parallel 6-DOF structure[J]. Robot, 2019, 41(1): 65-74,82. [5] 黎明和,何斌,秦海燕,等.具有黏附方向性及自适应的仿生湿吸足垫研究[J].科学通报,2011,56(7):529-535.Li M H, He B, Qin H Y, et al. A wet adhesion inspired biomi-metic pad with direction dependence and adaptability[J]. Chinese Science Bulletin, 2011, 56(7): 529-535. [6] 卢松明,郭策,戴振东.仿蝗虫脚掌的机器人脚结构设计及其优化[J].科学通报,2012,57(26):2463-2468.Lu S M, Guo C, Dai Z D. Design and optimization of robot foot structure of bionic locust's pads[J]. Chinese Science Bulletin, 2012, 57(26): 2463-2468. [7] Kim S, Asbeck A T, Cutkosky M R, et al. SpinybotII: Climbing hard walls with compliant microspines[C]//International Conference on Advanced Robotics. Piscataway, USA: IEEE, 2005. DOI: 10.1109/ICAR.2005.1507470. [8] Haynes G C, Khripin A, Lynch G, et al. Rapid pole climbing with a quadrupedal robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2009. DOI: 10.1109/ROBOT.2009.5152830. [9] Dickson J D, Clark J E. Design of a multimodal climbing and gliding robotic platform[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(2): 494-505. [10] Birkmeyer P, Gillies A G, Fearing R S. CLASH: Climbing vertical loose cloth[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2011: 5087-5093. [11] McKenzie C, Parness A. Video summary of DROP the durable reconnaissance and observation platform[C]//IEEE Interna-tional Conference on Robotics and Automation. Piscataway, USA: IEEE, 2012. DOI: 10.1109/IROS.2011.6094905. [12] 刘彦伟.爪刺式爬壁机器人仿生机理与系统研究[D].合肥:中国科学技术大学,2015.Liu Y W. Study of bio-inspired climbing robots: Mechanism and system[D]. Hefei: University of Science and Technology of China, 2015. [13] 褚明.A multimodal robot for perching and climbing on vertical outdoor surfaces[J]. IEEE Transactions on Robotics, 2017, 33(1): 38-48. [16] Sher I, Levinzon-Sher D, Sher E. Miniaturization limitations of HCCI internal combustion engines[J]. Applied Thermal Engineering, 2009, 29(2-3): 400-411. [17] Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources, 2010, 195(9): 2419-2430. [18] Bertin J J, Cummings R M. Aerodynamics for engineers[M]. 6th ed. New York, USA: Pearson, 2014. [19] Riskin D K, Bahlman J W, Hubel T Y, et al. Bats go head-under-heels: The biomechanics of landing on a ceiling[J]. Journal of Experimental Biology, 2009, 212: 945-953. [20] Byrnes G, Lim N T L, Spence A J. Take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus Variegatus)[J]. Proceedings of the Royal Society B-Biological Sciences, 2008, 275(1638): 1007-1013. [21] Ganti S, Bhushan B. Generalized fractal analysis and its applications to engineering surfaces[J]. Wear, 1995, 180(1-2): 17-34. [22] Brown S R. A note on the description of surface roughness using fractal dimension[J]. Geophysical Research Letters, 1987, 14(11): 1095-1098. [23] Altringham J D. Bats: Biology and behaviour[M]. New York, USA: Oxford University Press, 1996. [24] 陈东良,张群,王立权,等.一种粗糙壁面爬行机器人的设计与实现[J].哈尔滨工程大学学报,2012,33(2):209-213.Chen D L, Zhang Q, Wang L Q, et al. Design and realization of a kind of rough wall climbing robot[J]. Journal of Harbin Engineering University, 2012, 33(2): 209-213. [25] 张涛.机器人引论[M].北京:机械工业出版社,2010:103-112.Zhang T. Introduction to robot[M]. Beijing: China Machine Press, 2010: 103-112. [26] 何兆亨,刘颖,李能华,等.基于 LS-DYNA 的 CFRP 方管轴向压溃仿真方法研究[J].玻璃钢复合材料,2019(9):20-25.He Z H, Liu Y, Li N H, et al. Simulation methods for axial crushing CFRP tubes in LS-DYNA[J]. Fiber Reinforced Plastics/Composites, 2019(9): 20-25.