Abstract:For the current monocular visual-inertial SLAM (simultaneous localization and mapping) systems, the acceleration excitation is necessary, and the system accuracy will decrease in the case of high IMU (inertial measurement unit) noises. To solve those problems, a visual-inertial SLAM method based on rolling shutter RGB-D cameras is proposed, named VINS-RSD method, which combines rolling shutter RGB-D image and IMU to initialize the system. The rolling shutter effect is corrected by controlling the feature velocity, and a loss kernel function with confidence factor is applied to the sliding window optimization. An open-source depth dataset extended from WHU-RSVI dataset is developed to evaluate the RGB-D visual-inertial SLAM method. Experiments are performed on the dataset and the root mean square error of VINS-RSD method is reduced by 30.76% compared to VINS-Mono (monocular visual-inertial system) method, which demonstrates that the proposed method can achieve a higher tracking accuracy.
[1] Mourikis A I, Roumeliotis S I. A multi-state constraint Kalman filter for vision-aided inertial navigation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA: IEEE, 2007. DOI: 10.1109/ROBOT.2007.364024. [2] Heo S, Park C G. Consistent EKF-based visual-inertial odometry on matrix Lie group[J]. IEEE Sensors Journal, 2018, 18(9): 3780-3788. [3] Bloesch M, Omari S, Hutter M, et al. Robust visual inertial odometry using a direct EKF-based approach[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2015: 298-304. [4] Leutenegger S, Furgale P, Rabaud V, et al. Keyframe-based visual-inertial SLAM using nonlinear optimization[C]//Pro-ceedings of Robotis: Science and Systems. 2013. DOI: 10. 15607/RSS.2013.IX.037. [5] Leutenegger S, Lynen S, Bosse M, et al. Keyframe-based visual-inertial odometry using nonlinear optimization[J]. International Journal of Robotics Research, 2015, 34(3): 314-334. [6] Qin T, Li P L, Shen S J. VINS-Mono: A robust and versatile monocular visual-inertial state estimator[J]. IEEE Transactions on Robotics, 2018, 34(4): 1004-1020. [7] Qin T, Pan J, Cao S Z, et al. A general optimization-based framework for local odometry estimation with multiple sensors[DB/OL]. (2019-01-11) [2020-01-22]. https://arxiv.org/abs/1901.03638. [8] Qin T, Cao S Z, Pan J, et al. A general optimization-based framework for global pose estimation with multiple sensors[DB/OL]. (2019-01-11) [2020-01-22]. https://arxiv.org/abs/1901.03642. [9] Rosinol A, Abate M, Chang Y, et al. Kimera: An open-source library for real-time metric-semantic localization and mapping[DB/OL]. (2020-03-04) [2020-12-22]. https://arxiv.org/abs/1910.02490v1. [10] Kerl C, Stuckler J, Cremers D. Dense continuous-time tracking and mapping with rolling shutter RGB-D cameras[C]//IEEE International Conference on Computer Vision. Piscataway, USA: IEEE, 2015. DOI: 10.1109/ICCV.2015.261. [11] Lovegrove S, Patron-Perez A, Sibley G. Spline fusion: A continuous-time representation for visual-inertial fusion with application to rolling shutter cameras[C]//British Machine Vision Conference. Bristol, UK: BMVA Press, 2013. DOI: 10. 5244/C.27.93. [12] Patron-Perez A, Lovegrove S, Sibley G. A spline-based trajectory representation for sensor fusion and rolling shutter ca-meras[J]. International Journal of Computer Vision, 2015, 113: 208-219. [13] Lee C R, Yoon K J. Inertial-aided rolling shutter relative pose estimation[DB/OL]. (2017-12-01) [2020-12-22]. https://arxiv.org/abs/1712.00184. [14] Li W L, Tang Y, Ding C, et al. Visual-inertial ego-motion estimation using rolling-shutter camera in autonomous driving[EB/OL]. (2020-02-01) [2020-05-01]. http://copland.udel.edu/ghuang/iros19-vins-workshop/papers/03.pdf. [15] Yang N, Wang R, Gao X, et al. Challenges in monocular visual odometry: Photometric calibration, motion bias, and rolling shutter effect[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 2878-2885. [16] Cao L K, Ling J, Xiao X H. The WHU rolling shutter visual-inertial dataset[J]. IEEE Access, 2020, 8: 50771-50779. [17] Mackay D. Generating synthetic stereo pairs and a depth map with POVRay[R/OL]. (2007-06-01) [2018-03-01]. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.68.8768&rep=rep1&type=pdf. [18] Sturm J, Engelhard N, Endres F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2012. DOI: 10.1109/IROS.2012.6385773. [19] Smisek J, Jancosek M, Pajdla T. 3D with Kinect[C]//IEEE International Conference on Computer Vision Workshops. Piscataway, USA: IEEE, 2011. DOI: 10.1109/ICCVW.2011.6130380. [20] Fossati A, Gall J, Grabner H, et al. On-manifold preintegration for real-time visual-inertial odometry[J]. IEEE Transactions on Robotics, 2017, 33(1). DOI: 10.1109/TRO.2016.2597321. [22] Mur-Artal R, Tardós J D. Visual-inertial monocular SLAM with map reuse[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 796-803. [23] Gao X S, Hou X R, Tang J L, et al. Complete solution classification for the perspective-three-point problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8): 930-943. [24] Lepetit V, Moreno-Noguer F, Fua P. EPnP: An accurate O(n) solution to the PnP problem[J]. International Journal of Computer Vision, 2009, 81: 155-166. [25] Penate-Sanchez A, Andrade-Cetto J, Moreno-Noguer F. Exhaustive linearization for robust camera pose and focal length estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(10): 2387-2400. [26] Grupp M. Evo: Python package for the evaluation of odometry and SLAM[DB/OL]. (2017-12-01) [2018-12-22]. https://github.com/MichaelGrupp/evo. [27] Zhang Z C, Scaramuzza D. A tutorial on quantitative trajectory evaluation for visual(-inertial) odometry[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA: IEEE, 2018. DOI: 10.1109/IROS.2018.8593941.