Fuzzy PID Control of Parallel Platform Actuated by Pneumatic Artificial Muscle
LI Fang1, CHEN Qi2, LIU Kai2, WU Yang2, CHEN Yining2, WANG Mingxin3, YAO Jiafeng2
1. College of Mechanical and Electrical Engineering, Sanjiang University, Nanjing 210012, China; 2. College of Mechanical and Electronic Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; 3. Nanda Automation Technology Jiangsu Co. Ltd, Nanjing 211102, China
Abstract:A fuzzy PID (proportional-integral-differential) control algorithm based on Prandtl-Ishlinskii (P-I) inverse model is proposed to improve the control accuracy of position tracking for a 3-DOF (degree of freedom) parallel platform actuated by PAM (pneumatic artificial muscle). Firstly, the hysteresis characteristics of a single pneumatic artificial muscle are analyzed through dynamic tests to establish P-I inverse model. Then, the PAM actuated 3-DOF parallel test platform is built, and the fuzzy PID controller is designed. Tests result show that the maximum error of the model is 0.3904 mm, and the average error is 0.0793 mm, which verifies that the proposed control algorithm can greatly reduce the influence of PAM hysteresis characteristics on the dynamic control accuracy. And the error of angle γ of the 3-DOF platform can be kept within 0.13°, and the overall error fluctuation of the fuzzy PID controller based on P-I inverse model is small, which shows that the effect of dynamic trajectory tracking is good.
[1] Belforte G, Eula G, Ivanov A. Presentation of textile pneumatic muscle prototypes applied in an upper limb active suit experimental model[J]. Journal of the Textile Institute, 2018, 109(6): 757-766. [2] 陈煜宇,刘磊,李博,等.柔性驱动与刚度可调结构功能一体化微创手术操作臂设计制造与性能研究[J].机械工程学报,2018,54(17):53-61.Chen Y Y, Liu L, Li B, et al. Design, fabrication and performance of a flexible minimally invasive surgery manipulator integrated with soft actuation and variable stiffness[J]. Journal of Mechanical Engineering, 2018, 54(17): 53-61. [3] 于志亮,王岩,曹开锐,等.Modeling torque-angle hysteresis in a pneumatic muscle manipulator[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, USA: IEEE, 2010: 1122-1127. [5] Lin C J, Lin C R, Yu S K, et al. Hysteresis modeling and tracking control for a dual pneumatic artificial muscle system using Prandtl-Ishlinskii model[J]. Mechatronics, 2015, 28: 35-45. [6] Ganguly S, Garg A, Pasricha A, et al. Control of pneumatic artificial muscle system through experimental modeling[J]. Mechatronics, 2012, 22(8): 1135-1147. [7] 王斌锐,沈国阳,金英连.基于干扰观测器的级联气动肌肉肘关节滑模控制[J].兵工学报,2017,38(4):793-801.Wang B R, Shen G Y, Jin Y L. Sliding mode control of cascade pneumatic muscles of elbow joint based on disturbance observer[J]. Acta Armamentarii, 2017, 38(4): 793-801. [8] 柯达.气动肌肉驱动的康复机器人迭代学习控制研究[D].武汉:武汉理工大学,2018.Ke D. Research on iterative learning control of rehabilitation robot driven by pneumatic muscle[D]. Wuhan: Wuhan University of Technology, 2018. [9] 鲍春雷,金英连,王斌锐.气动肌肉关节的神经元 PID 轨迹跟踪控制[J].计算机测量与控制,2014,22(5):1436-1438.Bao C L, Jin Y L, Wang B R. Neuron PID trajectory tracking control of pneumatic muscle joints[J]. Computer Measurement & Control, 2014, 22(5): 1436-1438. [10] Zang X Z, Liu Y X, Heng S, et al. Position control of a single pneumatic artificial muscle with hysteresis compensation based on modified Prandtl-Ishlinskii model[J]. Bio-Medical Materials and Engineering, 2017, 28(2): 131-140. [11] 刘昱,王涛,范伟,等.气动肌肉群驱动球关节机器人的无模型自适应控制[J].机器人,2013,35(2):129-134.Liu Y, Wang T, Fan W, et al. Model-free adaptive control for the ball-joint robot driven by PMA group[J]. Robot, 2013, 35(2): 129-134. [12] 田艳兵,王涛,王美玲.基于广义 PI 逆模型的超精密定位平台复合控制[J].机械工程学报,2015,51(2):198-206.Tian Y B, Wang T, Wang M L. Compounding control of ultra-precision positioning stage based on inverse generalized PI model[J]. Journal of Mechanical Engineering, 2015, 51(2): 198-206. [13] 张道辉,赵新刚,韩建达,等.气动人工肌肉拮抗关节的力与刚度独立控制[J].机器人,2018,40(5):587-596.Zhang D H, Zhao X G, Han J D, et al. Independent force and stiffness control for antagonistic joint driven by pneumatic artificial muscles[J]. Robot, 2018, 40(5): 587-596. [14] Liu K, Xu J Q, Ge Z S, et al. Robust control of 3-DOF parallel robot driven by PMAs based on nominal stiffness model[J]. Advanced Robotics, 2017, 31(10): 531-543. [15] 智红英,闫献国,杜娟,等.预测铣削稳定性的隐式 Adams 方法[J].机械工程学报,2018,54(23):223-232.Zhi H Y, Yan X G, Du J, et al. Prediction of the milling stability based on the implicit Adams method[J]. Journal of Mechanical Engineering, 2018, 54(23): 223-232.