Abstract:In order to improve the stiffness performance of the robot and reduce the milling processing errors, the stiffness of a 6 DoF (degree of freedom) robot equipped with a milling actuator is optimized. Firstly, a robot stiffness mapping model is established using the virtual work principle. Secondly, the joint stiffness is obtained by the designed identification experiments. Then, the optimized pose of the robot is solved using the genetic algorithm, taking the isotropy of the milling force elliptic plane as the optimization index. Finally, the overall stiffness of the robot before and after the pose optimization are compared and analyzed. And a robot milling test is performed to verify the effectiveness of the pose optimization. Consequently, the milling flatness can be improved by 45%. The optimization method can guide the milling processing tasks of the serial industrial robot on the large spacecraft cabin, and improve the processing quality.
[1] Sendler U. Industrie 4.0[M]. Beijing:China Machine Press, 2014. [2] 周莹皓,张加波,乐毅,等. 移动机器人技术在航天制造业中的应用[J].机械设计与制造工程, 2018, 47(2):8791. Zhou Y H, Zhang J B, Le Y, et al. Application of mobile robot technology in the aerospace manufacturing industry[J]. Machine Design and Manufacturing Engineering, 2018, 47(2):87-91. [3] 王浩. 工业机器人技术的发展与应用综述[J].中国新技术新产品, 2018(3):109-110. Wang H. Overview of the development and application of industrial robot technology[J]. New Technology & New Products of China, 2018(3):109-110. [4] Guo Y J, Dong H Y, Ke Y L. Stiffness-oriented posture optimization in robotic machining applications[J]. Robotics and Computer-Integrated Manufacturing, 2015, 35:69-76. [5] Chen C, Peng F Y, Yan R, et al. Stiffness performance index based posture and feed orientation optimization in robotic milling process[J]. Robotics and Computer-Integrated Manufacturing, 2019, 55:29-40. [6] Shen N Y, Guo Z M, Li J, et al. A practical method of improving hole position accuracy in the robotic drilling process[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96:2973-2987. [7] Celikag H, Sims N D, Ozturk E. Cartesian stiffness optimization for serial arm robots[J]. Procedia CIRP, 2018, 77:566-569. [8] 吴石,李荣义,刘献礼,等. 复杂曲面模具加工系统综合刚度场建模与分析[J].机械工程学报, 2016, 52(23):189-198. Wu S, Li R Y, Liu X L, et al. The modeling and analysis about comprehensive stiffness field of complex curved surface mould processing system[J]. Journal of Mechanical Engineering, 2016, 52(23):189-198. [9] Jiao J C, Tian W, Liao W H, et al. Processing configuration off-line optimization for functionally redundant robotic drilling tasks[J]. Robotics and Autonomous Systems, 2018, 110:112123. [10] Yue Y, Zheng L Y, Zhang Z L, et al. Research on numerical control of the mobile robotic machine tool[C]//IEEE 9th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Piscataway, USA:IEEE, 2019:76-80. [11] Zhang J B, Wen K, Yue Y, et al. Research on key technologies for high-precision whole flexible machining of large-scale multi-supports cabin[C]//IEEE 10th International Conference on Mechanical and Aerospace Engineering. Piscataway, USA:IEEE. DOI:10.1109/ICMAE.2019.8880959. [12] John J C. 机器人学导论[M]. 3版.北京:机械工业出版社, 2006. John J C. Introduction to robotics mechanics and control[J]. 3rd ed. Beijing:China Machine Press, 2006. [13] 谷勇霞,张玉玲,赵杰亮,等. 柔性机械臂动力学建模理论与实验研究进展[J].中国机械工程, 2016, 27(12):1694-1703. Gu Y X, Zhang Y L, Zhao J L, et al. Advances on dynamics modeling and experimental studies for flexible manipulators[J]. China Mechanical Engineering, 2016, 27(12):1694-1703. [14] Xiong G, Ding Y, Zhu L M. Stiffness-based pose optimization of an industrial robot for five-axis milling[J]. Robotics and Computer-Integrated Manufacturing, 2019, 55(A):19-28. [15] Dumas C, Caro S, Garnier S, et al. Joint stiffness identification of six-revolute industrial serial robots[J]. Robotics and Computer Integrated Manufacturing, 2011, 27(4):881-888. [16] Zargarbashi S H H, Khan W, Angeles J. Posture optimization in robot-assisted machining operations[J]. Mechanism and Machine Theory, 2012, 51:74-86. [17] Bu Y, Liao W H, Tian W, et al. Stiffness analysis and optimization in robotic drilling application[J]. Precision Engineering, 2017, 49:388-400. [18] 孙龙飞,房立金,梁风勇. 新型工业机器人结构设计及其全域刚度预估方法[J].机器人, 2018, 40(5):673-684. Sun L F, Fang L J, Liang F Y. Structure design and global stiffness prediction method of a novel industrial robot[J]. Robot, 2018, 40(5):673-684. [19] 雷英杰,张善文. 遗传算法工具箱及应用[M].西安:西安电子科技大学出版社, 2014. Lei Y J, Zhang S W. Matlab genetic algorithm toolbox and application[M]. Xi'an:Xidian University Press, 2014. [20] 韩万林,张幼蒂. 遗传算法的改进[J].中国矿业大学学报, 2000, 29(1):102-105. Han W L, Zhang Y D. Improvement of genetic algorithm[J]. Journal of China University of Mining & Technology, 2000, 29(1):102-105. [21] Coello C A C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:A survey of the state of the art[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11/12):1245-1287.