A Calculation Method of ARV Buoyancy Trim at Full-Ocean Depth
LU Yang1,2, TANG Yuangui1,2, WANG Jian1,2, CHEN Cong1,2, YAN Xingya1,2
1. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110169, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
陆洋, 唐元贵, 王健, 陈聪, 闫兴亚. 全海深ARV浮力配平计算方法[J]. 机器人, 2021, 43(1): 74-80.DOI: 10.13973/j.cnki.robot.200037.
LU Yang, TANG Yuangui, WANG Jian, CHEN Cong, YAN Xingya. A Calculation Method of ARV Buoyancy Trim at Full-Ocean Depth. ROBOT, 2021, 43(1): 74-80. DOI: 10.13973/j.cnki.robot.200037.
Abstract:When a full-ocean depth ARV (autonomous and remotely-operated vehicle) dives to Mariana Trench, the vehicle structure and the volume of compensation oil will change due to the pressure increase and temperature fall of seawater in the working environment. Taking the abyssal seawater density, gravity acceleration and robot volume change into consideration, the change amount of the robot buoyancy state is calculated, so as to calculate the robot buoyancy trim. A calculation method of buoyancy trim for the full-ocean depth ARV is obtained through formula derivation, combining with the experimental data of Hadal ARV and the compression experiment data of compensation oil. It mainly includes seawater density calculation, Mariana trench gravity acceleration calculation, the volume change measurement of the robot and compensation oil. The ballast for buoyancy trim at 11 000 m depth is calculated to be 8.9 kg. The buoyancy trim of Hadal ARV ensures that the buoyancy and gravity match suitably in abyssal working environment. Several sea trials at Mariana Trench are conducted. The proposed method provides a theoretical calculation basis for buoyancy trim of the full-ocean depth underwater robots.
[1] Jamieson A J, Fujii T, Mayor D J, et al. Hadal trenches:The ecology of the deepest places on Earth[J]. Trends in Ecology & Evolution, 2010, 25(3):190-197. [2] Anonymous. NASA study finds Earth's ocean abyss has not warmed[J]. Ocean News & Technology, 2014(11):23. [3] Bowen A D, Yoerger D R, Taylor C, et al. The Nereus hybrid underwater robotic vehicle[J]. Underwater Technology, 2009, 28(3):79-89. [4] Wang B, Wu C, Ge T. Control system of a novel underwater vehicle for global ocean science to the deepest ocean[C]//Chinese Control Conference. Piscataway, USA:IEEE, 2013:72687272. [5] Mikagawa T, Aoki M. An outline of R/V Kairei and recent activity of the multichannel seismic reflection survey system (MCS) and ROV Kaiko[J]. Journal of Marine Science and Technology, 2001, 6(1):42-49. [6] 唐元贵,王健,陆洋,等. "海斗号"全海深自主遥控水下机器人参数化设计方法与试验研究[J].机器人, 2019, 41(6):697-705. Tang Y G, Wang J, Lu Y, et al. Parametric design method and experimental research on Haidou full-depth ocean autonomous and remotely-operated vehicle[J]. Robot, 2019, 41(6):697-705. [7] 刘鑫宇,李一平,封锡盛. 万米级水下机器人浮力实时测量方法[J].机器人, 2018, 40(2):216-221. Liu X Y, Li Y P, Feng X S. Real-time measurement method of buoyancy of a full-ocean-depth underwater robot[J]. Robot, 2018, 40(2):216-221. [8] Zhou H K, Yang F, Wang W H, et al. Research and application of an underwater detection robot with three level control mode of ROV/ARV/AUV[C]//3rd International Conference on Information Technology and Industrial Automation. Lancaster, USA:DEStech Publications, 2018:604-609. [9] 姜言清,李晔,王友康,等. 全海深水下机器人的重力和浮力计算[J].哈尔滨工程大学学报, 2020, 41(4):481486. Jiang Y Q, Li Y, Wang Y K, et al. Gravity and buoyancy analysis of full ocean depth autonomous underwater vehicle[J]. Journal of Harbin Engineering University, 2020, 41(4):481-486. [10] 张昆. 新的重力加速度公式研究[J].地球物理学进展, 2011, 26(3):824-828. Zhang K. New gravity acceleration formula research[J]. Progress in Geophysics, 2011, 26(3):824-828. [11] 张胜军. 利用多源卫星测高资料确定海洋重力异常的研究[D].武汉:武汉大学, 2016. Zhang S J. Research on determination of marine gravity anomalies from multi-satellite altimeter data[D]. Wuhan:Wuhan University, 2016. [12] 张绮,王会娟,郭春梅,等. 电气绝缘油热膨胀系数的研究[J].石油炼制与化工, 2012, 43(10):55-59. Zhang Q, Wang H J, Guo C M, et al. Research on the thermal expansion coefficient of electrical insulating oil[J]. Petroleum Processing and Petrochemicals, 2012, 43(10):55-59. [13] ASTM International. Standard specification for mineral insulating oil used in electrical apparatus[S]. West Conshohockon, USA:ASTM International, 2009.