Research Status of Underwater Multi-Fingered Hands
CHEN Yanzhuang1,2,3, ZHANG Qifeng1,2, TIAN Qiyan1,2, HUO Liangqing1,2, FENG Xisheng1,2
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:After a survey and summary of the research progress of underwater multi-fingered hands at home and abroad, the status and structure of underwater multi-fingered hands are analyzed. Key technologies that affect the development of underwater multi-fingered hands are summarized and analyzed, including sealing and anticorrosion technology, force sensing technology, optimal grasp planning technology and grasping force control technology. Finally, the development trends are prospected.
[1] 蒋新松,封锡盛,王棣棠.水下机器人[M].沈阳:辽宁科学技术出版社,2000:3-6.Jiang X S, Feng X S, Wang D T. Unmanned underwater vehicles[M]. Shenyang:Liaoning Science and Technology Publishing House, 2000:3-6. [2] Sivcev S, Rossi M, Coleman J, et al. Collision detection for underwater ROV manipulator systems[J]. Sensors, 2018, 18(4). DOI:10.3390/s18041117. [3] Sanders J G, Beinart R A, Stewart F J, et al. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts[J]. ISME Journal, 2013, 7(8):1556-1567. [4] Sivcev S, Coleman J, Omerdic E, et al. Underwater manipulators:A review[J]. Ocean Engineering, 2018, 163:431-450. [5] Ribas D, Ridao P, Turetta A, et al. I-AUV mechatronics integration for the TRIDENT FP7 project[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(5):2583-2592. [6] Zhang Q F, Chen J, Huo L Q, et al. Design and experiments of a deep-sea hydraulic manipulator system[C]//OCEANS. Piscataway, USA:IEEE, 2013:117-128. [7] Fan Y L, Zhang Q F, Wang H L, et al. Design and experiments of a 11000m 7-function electric manipulator system[C]//OCEANS. Piscataway, USA:IEEE, 2018. DOI:10.1109/OCEANSKOBE.2018.8559478. [8] White S N, Kirkwood W, Sherman A, et al. Laser Raman spectroscopic instrumentation for in situ geochemical analyses in the deep ocean[C]//OCEANS. Piscataway, USA:IEEE, 2004:95-100. [9] Galloway K C, Becker K P, Phillips B, et al. Soft robotic grippers for biological sampling on deep reefs[J]. Soft Robotics, 2016, 3(1):23-33. [10] Brennan M L, Cantelas F, Elliott, K. et al. Telepresence-enabled maritime archaeological exploration in the deep[J]. Journal of Maritime Archaeology. 2018, 13:97-121. [11] Lane D M, Davies J B C, Casalino G, et al. AMADEUS:Advanced manipulation for deep underwater sampling[J]. IEEE Robotics & Automation Magazine, 1997, 4(4):34-45. [12] 朱光胜.基于水下机器人典型操作任务的实验手爪的研制[D].合肥:合肥工业大学,2006.Zhu G S. Research on experimental gripper for the subsea robot's typical operating assignment[D]. Hefei:Hefei University of Technology, 2006. [13] Lemburg J, Kampmann P, Kirchner F. A small-scale actuator with passive-compliance for a fine-manipulation deep-sea manipulator[C]//OCEANS. Piscataway, USA:IEEE, 2011. DOI:10.23919/OCEANS.2011.610701. [14] Bemfica J R, Melchiorri C, Moriello L, et al. Mechatronic design of a three-fingered gripper for underwater applications[J]. IFAC Proceedings Volumes, 2013, 46(5):307-312. [15] Angeletti D, Cannata G, Casalino G. The control architecture of the AMADEUS gripper[J]. International Journal of Systems Science, 1998, 29(5):485-496. [16] Bartolini G, Coccoli M, Ferrara A. Vibration damping and second-order sliding modes in the control of a single finger of the AMADEUS gripper[J]. International Journal of Systems Science, 1998, 29(5):497-512. [17] O'Brien D J, Lane D M. Force and explicit slip sensing for the AMADEUS underwater gripper[J]. International Journal of Systems Science, 1998, 29(5):471-483. [18] Robinson G, Davies J B C, Seaton E. Mechanical design, operation and direction prediction of the AMADEUS gripper system[J]. International Journal of Systems Science, 1998, 29(5):455-470. [19] Lane D M, Davies J B C, Robinson G, et al. The AMADEUS dextrous subsea hand:Design, modeling, and sensor processing[J]. IEEE Journal of Oceanic Engineering, 1999, 24(1):96-111. [20] Kampmann P, Lemburg J, Hanff H, et al. Hybrid pressure-tolerant electronics[C]//OCEANS. Piscataway, USA:IEEE, 2012. DOI:10.1109/OCEANS.2012.6404828. [21] Kampmann P, Kirchner F. Towards a fine-manipulation system with tactile feedback for deep-sea environments[J]. Robotics and Autonomous Systems, 2015, 67:115-121. [22] Kampmann P. Development of a multi-modal tactile force sensing system for deep-sea applications[D]. Bremen, Germany:University of Bremen, 2016. [23] Bemfica J R, Melchiorri C, Moriello L, et al. A three-fingered cable-driven gripper for underwater applications[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2014:2469-2474. [24] Stuart H S, Wang S, Gardineer B, et al. A compliant underactuated hand with suction flow for underwater mobile manipulation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2014:6691-6697. [25] Stuart H S, Bagheri M, Wang S, et al. Suction helps in a pinch:Improving underwater manipulation with gentle suction flow[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2015:2279-2284. [26] Spadafora F, Muzzupappa M, Bruno F, et al. Design and construction of a robot hand prototype for underwater applications[J]. IFAC-PapersOnLine, 2015, 48(2):294-299. [27] Palli G, Moriello L, Scarcia U, et al. An underwater robotic gripper with embedded force/torque wrist sensor[J]. IFAC-PapersOnLine, 2017, 50(1):11209-11214. [28] Simetti E, Wanderlingh F, Torelli S, et al. Autonomous underwater intervention:Experimental results of the MARIS project[J]. IEEE Journal of Oceanic Engineering, 2018, 43(3):620-639. [29] Khatib O, Yeh X, Brantner G, et al. Ocean One:A robotic avatar for oceanic discovery[J]. IEEE Robotics & Automation Magazine, 2016, 23(4):20-29. [30] Stuart H, Wang S, Khatib O, et al. The Ocean One hands:An adaptive design for robust marine manipulation[J]. International Journal of Robotics Research, 2017, 36(2):150-166. [31] Mura D, Barbarossa M, Dinuzzi G, et al. A soft modular end effector for underwater manipulation:A gentle, adaptable grasp for the ocean depths[J]. IEEE Robotics & Automation Magazine, 2018, 25(4):45-56. [32] Phillips B T, Becker K P, Kurumaya S, et al. A dexterous, glove-based teleoperable low-power soft robotic arm for delicate deep-sea biological exploration[J]. Scientific Reports, 2018, 8. DOI:10.1038/s41598-018-33138-y. [33] Kurumaya S, Phillips B T, Becker K P, et al. A modular soft robotic wrist for underwater manipulation[J]. Soft Robotics, 2018, 5(4):399-409. [34] Teoh Z E, Phillips B, Becker K, et al. Rotary-actuated folding polyhedrons for midwater investigation of delicate marine organisms[J]. Science Robotics, 2018, 3(20). DOI:10.1126/scirobotics.aat5276. [35] 孟庆鑫,王华,王立权,等.一种水下灵巧手指端力传感器的研究[J].中国机械工程,2006,17(11):1132-1135.Meng Q X, Wang H, Wang L Q, et al. Development of fingertip force sensor for a dexterous underwater hand[J]. China Mechanical Engineering, 2016, 17(11):1132-1135. [36] 王华.具有力感知功能的水下灵巧手研究[D].哈尔滨:哈尔滨工程大学,2006.Wang H. Underwater dexterous hand with force sense[D]. Harbin:Harbin Engineering University, 2006. [37] 聂余满,许德章,王勇,等.一种欠驱动水下机器人手爪的作业能力研究[J].机器人,2005,27(6):497-501.Nie Y M, Xu D Z, Wang Y, et al. Study on the manipulation capacity of an underactuated underwater robot hand[J]. Robot, 2005, 27(6):497-501. [38] 汪步云.水下作业机械手抓取力伺服控制的研究[D].芜湖:安徽工程大学,2010.Wang B Y. Research on grasping force servo control of underwater operation manipulator[D]. Wuhu:Anhui Polytechnic University, 2010. [39] Xu D Z, Yang M, Zhang Q, et al. Mechanical structure of intelligent underwater dexterous hand[C]//IEEE International Conference on Information and Automation. Piscataway, USA:IEEE, 2011:782-785. [40] 许德章,汪步云,张庆,等.水下作业灵巧手水压驱动系统的设计与工程实现[J].机械科学与技术,2011,30(2):181-184.Xu D Z, Wang B Y, Zhang Q, et al. Design and implementation of the driving system for underwater operation dexterous hands[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30(2):181-184. [41] 刘辰辰.水下力感知多指手设计及研究[D].北京:中国科学院大学,2018.Liu C C. Design and research of underwater multi-fingered hand with force sense[D]. Beijing:University of Chinese Academy of Sciences, 2018. [42] 谢哲新,龚哲元,王田苗,等.可控三维运动的软体驱动器仿真与试验[J].机械工程学报,2018,54(21):11-18.Xie Z X, Gong Z Y, Wang T M, et al. Simulation and experiments of a controllable soft spatial fluidic elastomer manipulator[J]. Journal of Machincal Design, 2018, 54(21):11-18. [43] 张立彬,杨庆华,胥芳,等.机器人多指灵巧手及其驱动系统研究的现状[J].农业工程学报,2004,20(3):271-275.Zhang L B, Yang Q H, Xu F, et al. Research status of robot multi-fingered dexterous hand and its driving system[J]. Transactions of the CSAE, 2004, 20(3):271-275. [44] Laschi C, Mazzolai B, Cianchetti M. Soft robotics:Technologies and systems pushing the boundaries of robot abilities[J]. Science Robotics, 2016, 1(1). DOI:10.1126/scirobotics.aah3690. [45] Wehner M, Truby R L, Fitzgerald D J, et al. An integrated design and fabrication strategy for entirely soft, autonomous robots[J]. Nature, 2016, 536(7617):451-455. [46] Pelrine R, Kornbluh R, Pei Q B, et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287(5454):836-839. [47] Shintake J, Rosset S, Schubert B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators[J]. Advanced Materials, 2016, 28(2):231-238. [48] Chiba S, Waki M, Sawa T, et al. Electroactive polymer "artificial muscle" operable in ultra-high hydrostatic pressure environment[J]. IEEE Sensors Journal, 2011, 11(1):3-4. [49] Meng Q X, Wang H, Li P, et al. Dexterous underwater robot hand:HEU hand II[C]//International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2006:1477-1482. [50] 杨尚武,项杰.带传动理论与技术的现状与发展[J].科技创新与应用,2019(13):168-169.Yang S W, Xiang J. Research status and development of belt transmission theory and technology[J]. Technology Innovation and Application, 2019(13):168-169. [51] 张永德,刘廷荣,李华敏.机器人多指灵巧手的结构型式的优化分析[J].机械设计,1999(7):9-13.Zhang Y D, Liu T R, Li H M. Optimal analysis of the structure of robot multi-fingered dexterous hand[J]. Journal of Machine Design, 1999(7):9-13. [52] Osswald D, Wörn H. Mechanical system and control system of a dexterous robot hand[C]//IEEE-RAS International Conference on Humanoid Robots. 2001. [53] Vogt D M, Becker K P, Phillips B T, et al. Shipboard design and fabrication of custom 3D-printed soft robotic manipulators for the investigation of delicate deep-sea organisms[J]. PLOS ONE, 2018, 13(8). DOI:10.1371/journal.pone.0200386. [54] 沃林.密封件与密封手册[M].北京:国防工业出版社,1990:1-8.Waring R H. Seal and sealing handbook[M]. Beijing:National Defense Industry Press, 1990:1-8. [55] 梁桥康.特殊应用的多维力/力矩传感器研究与应用[D].合肥:中国科学技术大学,2010.Liang Q K. Research on multi-dimensional FIT sensor for specific applications[D]. Hefei:University of Science and Technology of China, 2010. [56] 崔维娜,王巍.一种新型水下机器人用六维腕力传感器[J].仪器仪表学报,2001,22(4):388-390.Cui W N, Wang W. A newly structured six-axis wrist force sensor for underwater robot[J]. Chinese Journal of Scientific Instrument, 2001, 22(4):388-390. [57] 唐玮.水下机器人多维力传感器的设计与研究[D].合肥:合肥工业大学,2003.Tang W. Design and research on multidimensional force sensor of underwater robot[D]. Hefei:Hefei University of Technology, 2003. [58] 王华,孟庆鑫,刘海,等.水下灵巧手指端力传感器及静态标定方法[J].传感器技术,2005,24(10):71-73,76.Wang H, Meng Q X, Liu H, et al. Fingertip force sensor for underwater dexterous hand and static calibration method[J]. Journal of Transducer Technology, 2005, 24(10):71-73,76. [59] 张建军,刘卫东,张溢文,等.基于微机电系统的水下灵巧手触觉力测量传感器[J].上海交通大学学报,2018,52(1):76-82.Zhang J J, Liu W D, Zhang Y W, et al. Tactile force sensor of underwater dexterous hand based on micro electromechanical system[J]. Journal of Shanghai Jiao Tong University, 2018, 52(1):76-82. [60] Kampmann P, Kirchner F. Integration of fiber-optic sensor arrays into a multi-modal tactile sensor processing system for robotic end-effectors[J]. Sensors, 2014, 14(4):6854-6876. [61] Palli G, Moriello L, Melchiorri C. Experimental evaluation of sealing materials in 6-axis force/torque sensors for underwater applications[C]//A Texture-Based Method for Choroid Segmentation in Retinal EDI-OCT Images. Berlin, Germany:Springer, 2015:841-852. [62] 刘庆运,钱瑞明,颜景平.机器人多指手抓取运动学研究综述[J].机械科学与技术,2006,25(8):967-971.Liu Q Y, Qian R M, Yan J P. A survey of grasping kinematics by multi-fingered robot hands[J]. Mechanical Science and Technology for Aerospace Engineering, 2006, 25(8):967-971. [63] Cutkosky M R. On grasp choice, grasp models, and the design of hands for manufacturing tasks[J]. IEEE Transactions on Robotics and Automation, 1989, 5(3):269-279. [64] 孙瑛,苗卫,李公法,等.机器人多指抓取最优规划的研究现状和发展趋势[J].长江大学学报(自科版),2016,13(1):60-64.Sun Y, Miao W, Li G F, et al. Research status and development trend of optimal planning for robot multi-finger grabbing[J]. Journal of Yangtze University (Natural Science Edition), 2016, 13(1):60-64. [65] Reuleaux F. The kinematics of machinery:Outlines of a theory of machines[M]. New York, USA:Dover Publications, 2012. [66] Markenscoff X, Luqun N, Papadimitriou C H. The geometry of grasping[J]. International Journal of Robotics Research, 1990, 9(1):61-74. [67] Mishra B, Schwartz J T, Sharir M. On the existence and synthesis of multifinger positive grips[J]. Algorithmica, 1987, 2(4):541-558. [68] 熊有伦.点接触约束理论与机器人抓取的定性分析[J].中国科学,1994,24(8):874-883.Xiong Y L. Point contact constraint theory and qualitative analysis of robot grabbing[J]. Science in China, 1994, 24(8):874-883. [69] 周荣荻.多指灵巧手的抓取规划策略研究[D].芜湖:安徽工程大学,2013.Zhou R D. Strategy study on grasp planning of multi-fingered dexterous hand[D]. Wuhu:Anhui Polytechnic University, 2013. [70] Nguyen V. Constructing force-closure grasps[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1986:1368-1373. [71] Tung C P, Kak A C. Fast construction of force-closure grasps[J]. IEEE Transactions on Robotics and Automation, 1996, 12(4):615-626. [72] Li J W, Liu H, Cai H G. On computing three-finger force-closure grasps of 2-D and 3-D objects[J]. IEEE Transactions on Robotics and Automation, 2003, 19(1):155-161. [73] Liu Y H. Computing n-finger form-closure grasps on polygonal objects[J]. International Journal of Robotics Research, 2000, 19(2):149-158. [74] Miao W, Li G, Jiang G, et al. Optimal grasp planning of multi-fingered robotic hands:A review[J]. Applied and Computational Mathematics, 2015, 14:238-247. [75] 方伟.基于FPA多指灵巧手抓持规划研究[D].杭州:浙江工业大学,2016.Fang W. Grasping planning of multi-fingered dexterous hand based on the flexible pneumatic actuator FPA[D]. Hangzhou:Zhejiang University of Technology, 2016. [76] Yan W Y, Deng Z, Chen J B, et al. Precision grasp planning for multi-finger hand to grasp unknown objects[J]. Robotica, 2019, 37(8):1415-1437. [77] Eppner C, Brock O. Planning grasp strategies that exploit environmental constraints[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:4947-4952. [78] Kim J, Iwamoto K, Kuffner J J, et al. Physically based grasp quality evaluation under pose uncertainty[J]. IEEE Transactions on Robotics, 2013, 29(6):1424-1439. [79] 郭迪.面向机器人操作的目标检测与抓取规划研究[D].北京:清华大学,2016.Guo D. Research on the object detection and grasp planning for robotic manipulation[D]. Beijing:Tsinghua University, 2016. [80] Goldfeder C, Ciocarlie M, Hao D, et al. The Columbia grasp database[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2009:1710-1716. [81] Sauser E L, Argall B D, Metta G, et al. Iterative learning of grasp adaptation through human corrections[J]. Robotics and Autonomous Systems, 2012, 60(1):55-71. [82] Detry R, Ek C H, Madry M, et al. Learning a dictionary of prototypical grasp-predicting parts from grasping experience[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:601-608. [83] Guo D, Sun F C, Kong T, et al. Deep vision networks for real-time robotic grasp detection[J]. International Journal of Advanced Robotic Systems, 2017, 14(1). DOI:10.1177/1729881416682706. [84] Salisbury J K, Roth B. Kinematic and force analysis of articulated mechanical hands[J]. Journal of Mechanical Design, 1983, 105(1):35-41. [85] Cheng F T, Orin D E. Efficient algorithm for optimal force distribution-The compact-dual LP method[J]. IEEE Transactions on Robotics and Automation, 1990, 6(2):178-187. [86] Liu Y H. Qualitative test and force optimization of 3-D frictional form-closure grasps using linear programming[J]. IEEE Transactions on Robotics and Automation, 1999, 15(1):163-173. [87] Li H, Trinkle J C, Li Z X. Grasp analysis as linear matrix inequality problems[J]. IEEE Transactions on Robotics and Automation, 2000, 16(6):663-674. [88] Wang X, Rao H, Xiao Y, et al. Fast force optimization of multi-fingered robotic hand grasps based on Lagrange multiplier method[C]//35th Chinese Control Conference. Piscataway, USA:IEEE, 2016:6317-6323. [89] 郭语,孙志峻.机器人多指手的多目标优化抓取规划[J].东南大学学报(自然科学版),2012,42(4):643-648.Guo Y, Sun Z J. Multi-objective optimization grasping planning for multifingered robot hand[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(4):643-648. [90] Bai Y Q, Gao X R, Yu C J. Grasping force optimization for multi-fingered robotic hands using projection and contraction methods[J]. Journal of Optimization Theory and Applications, 2019, 183(2):592-608. [92] 霍良青,张奇峰,张竺英,等.用于水下环境的机械手柔性夹爪:201822271280.6[P].2019-08-27.Huo L Q, Zhang Q F, Zhang Z Y, et al. Flexible gripper of manipulator for underwater environment:201822271280.6[P]. 2019-08-27. [93] 王华, 孟庆鑫, 王立权.基于切片理论的水下灵巧手手指动力学分析[J].机器人,2007,29(2):160-166.Wang H, Meng Q X, Wang L Q. Analysis on finger dynamics of dexterous underwater hand based on strip theory[J]. Robot, 2007, 29(2):160-166. [94] 陈兆芃. 多指灵巧手控制系统及阻抗控制策略研究[D]. 哈尔滨:哈尔滨工业大学, 2012.Chen Z P. Research on the control system and impedance control strategies for multi-fingered dexterous robot hand[D]. Harbin:Harbin Institute of Technology, 2012. [95] Bai Y F, Zhang Q F, Tian Q Y, et al. Performance and experiment of deep-sea master-slave servo electric manipulator[C]//OCEANS. Piscataway, USA:IEEE, 2019. DOI:10.23919/OCEANS40490.2019.8962582. [96] Tian Q Y, Zhang Q F, Chen Y Z, et al. Influence of ambient pressure on performance of a deep-sea hydraulic manipulator[C]//OCEANS. Piscataway, USA:IEEE, 2019. DOI:10.1109/OCEANSE.2019.8867485.