Advances and Key Techniques of Transurethral Surgical Robot
SUN Zhen1, WANG Tianmiao1,2, WANG Junchen1,2, ZHANG Xuebin3
1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China; 2. Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100183, China; 3. Department of Urology, Peking Union Medical College Hospital, Beijing 100730, China
Abstract:Due to the narrow anatomy of the urethra and the limited field of the view (FOV) of the resectoscope, the transurethral surgical outcomes highly depend on the technical ability and experience of surgeon, and have more complications. Robotics must be introduced to improve the quality of surgery, reduce complications, and shorten the learning curve of operation. In order to promote the research and development of transurethral surgical robots in China, the research status of transurethral surgical robots at home and abroad is reviewed, and the typical transurethral surgery and relevant researches in robot mechanism design, force feedback technology, precise motion control, and surgical navigation are discussed and analyzed. Based on the summary results and key technologies analysis, the trend and challenges of transurethral surgery robot are proposed as well.
[1] 那彦群.中国泌尿外科疾病诊断治疗指南手册[M].北京:人民卫生出版社,2014.Na Y Q. Guidelines for the diagnosis and treatment of urological diseases in China[M]. Beijing:People's Medical Publishing House, 2014. [2] Tubaro A, Carter S, Hind A, et al. A prospective study of the safety and efficacy of suprapubic transvesical prostatectomy in patients with benign prostatic hyperplasia[J]. The Journal of Urology, 2001, 166(1):172-176. [3] Herrell S D, Webster R, Simaan N. Future robotic platforms in urologic surgery:Recent developments[J]. Current Opinion in Urology, 2014, 24(1):118-126. [4] 陈向东,王忠,齐隽.经尿道前列腺剜除术中对前列腺包膜和外科包膜性状的观察[J].中国男科学杂志,2009,23(5):43-45,52.Chen X D, Wang Z, Qi J. The character of the surgical capsule and the static capsule in PKEP[J]. Chinese Journal of Andrology, 2009, 23(5):43-45,52. [5] 段相林,郭炳冉,辜清.人体组织学与解剖学[M].4版.北京:高等教育出版社,2006.Duan X L, Guo B R, Gu Q. Human histology and anatomy[M]. 4th ed. Beijing:Higher Education Press, 2006. [6] Herr H W, Donat S M. Quality control in transurethral resection of bladder tumours[J]. BJU International, 2008, 102(9B):1242-1246. [7] Marescaux J, Leroy J, Gagner M, et al. Transatlantic robot-assisted telesurgery[J]. Nature, 2001, 413:379-380. [8] Horise Y, He X C, Gehlbach P, et al. FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2015:13-16. [9] Davies B L, Hibberd R D, Coptcoat M J, et al. A surgeon robot prostatectomy-A laboratory evaluation[J]. Journal of Medical Engineering and Technology, 1989, 13(6):273-277. [10] Davies B L, Hibberd R D. Robotic surgery at imperial college London[C]//IEEE International Conference on Systems, Man and Cybernetics. Piscataway, USA:IEEE, 1993:176-181. [11] Ng W S, Davies B L, Hibberd R D, et al. Robotic surgery[J]. IEEE Engineering in Medicine and Biology Magazine, 1993, 12(1):120-125. [12] Mei Q, Harris S J, Arambula-Cosio F, et al. PROBOT-A computer integrated prostatectomy system[C]//4th International Conference on Visualization in Biomedical Computing. Berlin, Germany:Springer-Verlag, 1996:581-590. [13] Mei Q, Harris S J, Hibberd R D, et al. Optimising operation process for computer integrated prostatectomy[C]//2nd International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany:Springer-Verlag, 1999:1042-1051. [14] de Badajoz E B, Garrido A J, Vacas F G, et al. New master arm for transurethral resection with a robot[J]. Archivos Espanoles de Urologia, 2002, 55(10):1247-1250. [15] Goldman R E, Bajo A, MacLachlan L S, et al. Design and performance evaluation of a minimally invasive telerobotic platform for transurethral surveillance and intervention[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(4):918-925. [16] Pickens R B, Bajo A, Simaan N, et al. A pilot ex vivo evaluation of a telerobotic system for transurethral intervention and surveillance[J]. Journal of Endourology, 2015, 29(2):231-234. [17] Sarli N, del Giudice G, De S, et al. Preliminary porcine in vivo evaluation of a telerobotic system for transurethral bladder tumor resection and surveillance[J]. Journal of Endourology, 2018, 32(6):516-522. [18] Hendrick R J, Herrell S D, Webster R J I. A multi-arm hand-held robotic system for transurethral laser prostate surgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2014:2850-2855. [19] Hendrick R J, Mitchell C R, Herrell S D, et al. Hand-held transendoscopic robotic manipulators:A transurethral laser prostate surgery case study[J]. International Journal of Robotics Research, 2015, 34(13):1559-1572. [20] Mitchell C R, Hendrick R J, Webster R J I, et al. Toward improving transurethral prostate surgery:Development and initial experiments with a prototype concentric tube robotic platform[J]. Journal of Endourology, 2016, 30(6):692-696. [21] Russo S, Dario P, Menciassi A. A novel robotic platform for laser-assisted transurethral surgery of the prostate[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(2):489-500. [22] 孙颖浩,徐凯,赵江然,等.一种经尿道的手术机器人及控制系统,中国:CN106510848A[P].2017-03-22.Sun Y H, Xu K, Zhao J R, et al. Transurethral surgical robot and control system, China:CN106510848A[P]. 2017-03-22. [23] Wang J C, Zhao J D, Ji X Q, et al. A surgical robotic system for transurethral resection[C]//World Congress on Medical Physics and Biomedical Engineering. Singapore:Springer, 2018:711-716. [24] Locke R C O, Patel R V. Optimal remote center-of-motion location for robotics-assisted minimally-invasive surgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2007:1900-1905. [25] Konietschke R, Hagn U, Nickl M, et al. The DLR MiroSurge-A robotic system for surgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2009:1147-1148. [26] Rainer K, Tim B, Christian R, et al. Optimal setup of the DLR MiroSurge telerobotic system for minimally invasive surgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:3435-3436. [27] Mayer H, Nagy I, Knoll A, et al. The Endo[PA]R system for minimally invasive robotic surgery[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2004:3637-3642. [28] Juan S, Gerard P, Pierre V. Improved dynamic formulation for decoupled Cartesian admittance control and RCM constraint[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2016:1124-1129. [29] Sturz Y R, Affolter L M, Smith R S. Laparoscopic visual field[J]. Surgical Endoscopy, 1998, 12(12):1415-1418. [31] Wang Y, Laby K P. Automated endoscope system for optimal positioning, USA:5553198[P]. 1996-11-29. [32] Wang Y, Uecker D R, Laby K P, et al. Apparatus for performing minimally invasive cardiac procedures with a robotic arm that has a passive joint and system which can decouple the robotic arm from the input device, USA:7390325[P]. 2006-01-17. [33] Eto M, Naito S. Robotic surgery assisted by the ZEUS system[J]. Recent Advances in Endourology, 2006, 6:39-48. [34] Jacques M, Francesco R. The ZEUS robotic system:Experimental and clinical applications[J]. Surgical Clinics of North America, 2003, 83(6):1305-1315. [35] 潘博,付宜利,王树国,等.微创条件约束下内窥镜操作机器人运动学[J].机械工程学报,2009,45(3):162-168.Pan B, Fu Y L, Wang S G, et al. Kinematics of laparoscopic robot under minimally invasive environment[J]. Chinese Journal of Mechanical Engineering, 2009, 45(3):162-168. [36] 王树新,李建民,张林安,等.一种用于辅助微创外科手术的持镜机器人系统,中国:CN101396298A[P].2009-04-01.Wang S X, Li J M, Zhang L A, et al. Robot system with endoscope for assisting micro-wound surgical operation, China:CN101396298A[P]. 2009-04-01. [37] Tang A L, Cao Q X, Tan H B, et al. Motion control of a master-slave minimally invasive surgical robot based on the hand-eye-coordination[C]//Asian Conference on Computer-Aided Surgery. Berlin, Germany:Springer, 2016:57-71. [38] Tang A L, Cao Q X, Pan T W. Spatial motion constraints for a minimally invasive surgical robot using customizable virtual fixtures[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2014, 10(4):447-460. [39] 唐奥林.面向主从式微创外科手术机器人的遥操作运动控制策略研究[D].上海:上海交通大学,2014.Tang A L. Research on the teleoperation motion control strategy for a master-slave minimally invasive surgical robot[D]. Shanghai:Shanghai Jiao Tong University, 2014. [40] Feng M, Fu L L, Pan B, et al. Development of a medical robot system for minimally invasive surgery[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2012, 8(1):85-96. [41] Niemeyer G D. Aspects of a control system of a minimally invasive surgical apparatus, USA:6493608[P]. 2002-12-10. [42] Tierney M J, Cooper T G, Julian C A, et al. Mechanical actuator interface system for robotic surgical tools, USA:7524320[P]. 2002-12-10. [43] Yi B, Wang G H, Li J M, et al. Domestically produced Chinese minimally invasive surgical robot system "Micro Hand S" is applied to clinical surgery preliminarily in China[J]. Surgical Endoscopy, 2017, 31(1):487-493. [44] Harris S J, Mei Q, Hibberd R D, et al. Experiences using a special purpose robot for prostate resection[C]//8th International Conference on Advanced Robotics. Piscataway, USA:IEEE, 1997:161-166. [45] Harris S J, Arambulacosio F, Mei Q, et al. The PROBOT-An active robot for prostate resection[J]. Proceedings of the Institution of Mechanical Engineers, Part H:Journal of Engineering in Medicine, 1994, 211(4):317-325. [46] Lum M J H, Friedman D C W, Sankaranarayanan G, et al. The Raven:Design and validation of a telesurgery system[J]. International Journal of Robotics Research, 2009, 28(9):1183-1197. [47] Hannaford B, Rosen J, Friedman D W, et al. Raven-II:An open platform for surgical robotics research[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(4):954-959. [48] Lewis A, Hannaford B. Dynamically evaluated gravity compensation for the Raven surgical robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2014:2534-2539. [49] Schwaner K L, Jensen P T, Savarimuthu T R. Increasing precision of the Raven-II surgical robot by applying cascade control[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2018:1138-1144. [50] Vaida C, Pisla D, Plitea N, et al. Development of a control system for a parallel robot used in minimally invasive surgery[C]//International Conference on Advancements of Medicine and Health Care through Technology. Berlin, Germany:Springer, 2009:171-176. [51] Plitea N, Pisla D, Vaida C, et al. Dynamic modeling of a parallel robot used in minimally invasive surgery[C]//The Second European Conference on Mechanism Science. Berlin, Germany:Springer, 2009:595-602. [52] Plitea N, Pisla D, Vaida C. On kinematics of a parallel robot used for the minimally invasive surgery[J]. Proceedings in Applied Mathematics and Mechanics, 2007, 7(1):4010033-4010034. [53] Sun J Y, Wang S, Yu H J, et al. Design and analysis of a new remote center-of-motion parallel robot for minimally invasive surgery[C]//International Conference on Intelligent Robotics and Applications. Berlin, Germany:Springer, 2017:417-428. [54] Sun J Y, Yan Z Y, Du Z J. Optimal design of a novel remote center-of-motion mechanism for minimally invasive surgical robot[J]. IOP Conference Series:Earth and Environmental Science. 2017, 69(1). DOI:10.1088/1755-1315/69/1/012097. [55] Diana M, Marescaux J. Robotic surgery[J]. British Journal of Surgery, 2015, 102(2):15-28. [56] Cenk Çavuşoğlu M, Williams W, Tendick F, et al. Robotics for telesurgery:Second generation Berkeley/UCSF laparoscopic telesurgical workstation and looking towards the future applications[J]. Industrial Robot, 2003, 30(1):22-29. [57] 孔康.小型化微创手术机器人设计方法与运动映射策略研究[D].天津:天津大学,2017.Kong K. Design method and motion mapping strategy of miniaturized minimally invasive surgery robot[D]. Tianjin:Tianjin University, 2017. [58] Luo D, Liu Y F, Zhu H W, et al. The MicroHand S robotic-assisted versus Da Vinci robotic-assisted radical resection for patients with Sigmoid colon cancer:A single-center retrospective study[J]. Surgical Endoscopy, 2020, 34:3368-3374. [59] Chirikjian G S, Burdick J W. A hyper-redundant manipulator[J]. IEEE Robotics and Automation Magazine, 1994, 1(4):22-29. [60] Burgner-Kahrs J, Rucker D C, Choset H. Continuum robots for medical applications:A survey[J]. IEEE Transactions on Robotics, 2015, 31(6):1261-1280. [61] Kwok K W, Hung Tsoi K, Vitiello V, et al. Dimensionality reduction in controlling articulated snake robot for endo-scopy under dynamic active constraints[J]. IEEE Transactions on Robotics, 2013, 29(1):15-31. [62] Newton R C, Noonan D P, Vitiello V, et al. Robot-assisted transvaginal peritoneoscopy using confocal endomicroscopy:A feasibility study in a porcine model[J]. Surgical Endoscopy, 2012, 26:2532-2540. [63] Shang J Z, Payne C J, Clark J, et al. Design of a multitasking robotic platform with flexible arms and articulated head for minimally invasive surgery[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2012:1988-1993. [64] Noonan D P, Vitiello V, Shang J Z, et al. A modular, mechatronic joint design for a flexible access platform for MIS[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2011:949-954. [65] Shang J Z, Noonan D P, Payne C J, et al. An articulated universal joint based flexible access robot for minimally invasive surgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:1147-1152. [66] Kwok K W, Vitiello V, Yang G Z. Control of articulated snake robot under dynamic active constraints[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany:Springer, 2010:229-236. [67] Ota T, Degani A, Schwartzman D, et al. A novel highly articulated robotic surgical system for epicardial ablation[C]//30th Annual International IEEE EMBS Conference. Piscataway, USA:IEEE, 2008:3273-3276. [68] Degani A, Choset H, Zubiate B, et al. Highly articulated robotic probe for minimally invasive surgery[C]//30th Annual International IEEE EMBS Conference. Piscataway, USA:IEEE, 2008:250-253. [69] Ota T, Degani A, Schwartzman D, et al. A highly articulated robotic surgical system for minimally invasive surgery[J]. The Annals of Thoracic Surgery, 2009, 87(4):1253-1256. [70] Rivera-Serrano C M, Johnson P, Zubiate B, et al. A transoral highly flexible robot:Novel technology and application[J]. The Laryngoscope, 2012, 122(5):1067-1071. [71] Yoon H S, Cha H J, Chung J, et al. Compact design of a dual master-slave system for maxillary sinus surgery[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:5027-5032. [72] Simaan N, Bajo A, Reiter A, et al. Lessons learned using the insertable robotic effector platform (IREP) for single port access surgery[J]. Journal of Robotic Surgery, 2013, 7(3):235-240. [73] Bajo A, Goldman R E, Wang L, et al. Integration and preliminary evaluation of an insertable robotic effectors platform for single port access surgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:3381-3387. [74] Garbin N, Wang L, Chandler J H, et al. Dual-continuum design approach for intuitive and low-cost upper gastrointestinal endoscopy[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(7):1963-1974. [75] Bajo A, Dharamsi L M, Netterville J L, et al. Robotic-assisted micro-surgery of the throat:The trans-nasal approach[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:232-238. [76] Sarli N, Marien T, Mitchell C R, et al. Kinematic and experimental investigation of manual resection tools for transurethral bladder tumor resection[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(2). DOI:10.1002/rcs.1757. [77] Sarli N, Marien T, Herrell S D, et al. Characterization of resection dexterity in transurethral resection of bladder tumor:A kinematic study[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:5324-5329. [78] Bajo A, Pickens R B, Herrell S D, et al. Constrained motion control of multisegment continuum robots for transurethral bladder resection and surveillance[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:5837-5842. [79] del Giudice G, Wang L, Shen J, et al. Continuum robots for multi-scale motion:Micro-scale motion through equilibrium modulation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2017:2537-2542. [80] Xu K, Zhao J, Fu M. Development of the SJTU unfoldable robotic system (SURS) for single port laparoscopy[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(5):2133-2145. [81] 王建辰.变刚度单孔手术机器人系统设计方法及主从控制策略研究[D].天津:天津大学,2017.Wang J C. Design and master-slave control strategy of a single-port surgical robot with controllable stiffness manipulation arms[D]. Tianjin:Tianjin University, 2017. [82] Gilbert H B, Rucker D C, Iii R J W. Concentric tube robots:The state of the art and future directions[C]//16th International Symposium on Robotics Research. Berlin, Germany:Springer, 2016:253-269. [83] Webster III R J, Romano J M, Cowan N J. Mechanics of precurved-tube continuum robots[J]. IEEE Transactions on Robotics, 2009, 25(1):67-78. [84] Rucker D C, Jones B A, Webster III R J. A geometrically exact model for externally loaded concentric-tube continuum robots[J]. IEEE Transactions on Robotics, 2010, 26(5):769-780. [85] Webster III R J, Okamura A, Cowan N. Toward active cannulas:Miniature snake-like surgical robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:2857-2863. [86] Dupont P E, Lock J, Itkowitz B, et al. Design and control of concentric-tube robots[J]. IEEE Transactions on Robotics, 2010, 26(2):209-225. [87] Gosline A H, Vasilyev N V, Veeramani A, et al. Metal MEMS tools for beating-heart tissue removal[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:1921-1926. [88] Vasilyev N V, Gosline A H, Veeramani A, et al. Tissue removal inside the beating heart using a robotically delivered metal MEMS tool[J]. International Journal of Robotics Research, 2015, 34(2):236-247. [89] Bergeles C, Gosline A H, Vasilyev N V, et al. Concentric tube robot design and optimization based on task and anatomical constraints[J]. IEEE Transactions on Robotics, 2015, 31(1):67-84. [90] Butler E J, Hammond-Oakley R, Chawarski S, et al. Robotic neuro-endoscope with concentric tube augmentation[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2012:2941-2946. [91] Anor T, Madsen J R, Dupont P E. Algorithms for design of continuum robots using the concentric tubes approach:A neurosurgical example[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:667-673. [92] Mahvash M, Dupont P E. Stiffness control of surgical continuum manipulators[J]. IEEE Transactions on Robotics, 2011, 27(2):334-345. [93] Lock J, Dupont P E. Friction modeling in concentric tube robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:1139-1146. [94] Bergeles C, Dupont P E. Planning stable paths for concentric tube robots[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2013:3077-3082. [95] Kim C, Ryu S C, Dupont P E. Real-time adaptive kinematic model estimation of concentric tube robots[C]//IEEE International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2015:3214-3219. [96] Ha J, Park F C, Dupont P E. Elastic stability of concentric tube robots subject to external loads[J]. IEEE Transactions on Biomedical Engineering, 2016, 63(6):1116-1128. [97] Jang C, Ha J, Dupont P E, et al. Toward on-line parameter estimation of concentric tube robots using a mechanics-based kinematic model[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2016:2400-2405. [98] Fagogenis G, Bergeles C, Dupont P E. Adaptive nonparametric kinematic modeling of concentric tube robots[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2016:4324-4329. [99] Ha J, Park F C, Dupont P E. Optimizing tube precurvature to enhance the elastic stability of concentric tube robots[J]. IEEE Transactions on Robotics, 2017, 33(1):22-37. [100] Ha J, Fagogenis G, Dupont P E. Modeling tube clearance and bounding the effect of friction in concentric tube robot kinematics[J]. IEEE Transactions on Robotics, 2019, 35(2):353-370. [101] 卢意.连续型同心管机器人系统设计及运动控制[D].哈尔滨:哈尔滨工业大学,2018.Lu Y. System design and motion control of continuous concentric tube robot[D]. Harbin:Harbin Institute of Technology, 2018. [102] Rosen J, Hannaford B, Satava R M. Surgical robotics[M]. Berlin, Germany:Springer, 2011. [103] Fischer G S, Akinbiyi T, Saha S, et al. Ischemia and force sensing surgical instruments for augmenting available surgeon information[C]//The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA:IEEE, 2006:1030-1035. [104] Brown J D, Rosen J, Sinanan M N, et al. In-vivo and postmortem compressive properties of porcine abdominal organs[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin, Germany:Springer, 2003:238-245. [105] Lee D H, Kim U, Gulrez T, et al. A laparoscopic grasping tool with force sensing capability[J]. IEEE/ASME Transactions on Mechatronics, 2015, 21(1):130-141. [106] Tavakoli M, Patel R V, Moallem M. Haptic interaction in robot-assisted endoscopic surgery:A sensorized end-effector[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2005, 1(2):53-63. [107] Peirs J, Clijnen J, Reynaerts D, et al. A micro optical force sensor for force feedback during minimally invasive robotic surgery[J]. Sensors and Actuators A:Physical, 2004, 115(2/3):447-455. [108] Puangmali P, Hongbin L, Seneviratne L D, et al. Miniature 3-axis distal force sensor for minimally invasive surgical palpation[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(4):646-656. [109] Kim U, Kim Y B, So J, et al. Sensorized surgical forceps for robotic-assisted minimally invasive surgery[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12):9604-9613. [110] Kim U, Lee D, Yoon W J, et al. Force sensor integrated surgical forceps for minimally invasive robotic surgery[J]. IEEE Transactions on Robotics, 2015, 31(5):1214-1224. [111] Tholey G, Pillarisetti A, Green W, et al. Design, development, and testing of an automated laparoscopic grasper with 3-D force measurement capability[C]//International Symposium on Medical Simulation. Berlin, Germany:Springer, 2004:38-48. [112] Tadano K, Kawashima K. Development of 4-DOFs forceps with force sensing using pneumatic servo system[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2006:2250-2255. [113] Haraguchi D, Kanno T, Tadano K, et al. A pneumatically driven surgical manipulator with a flexible distal joint capable of force sensing[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(6):2950-2961. [114] Salisbury Jr J K, Madhani A J, Guthart G S, et al. Master having redundant degrees of freedom, USA:6714839[P]. 2004-03-30. [115] 唐照坤. 七自由度力反馈主手结构设计与仿真[D].哈尔滨:哈尔滨工业大学,2015. Tang Z K. Structure design and simulation of seven DOF force feedback manipulator[D]. Harbin:Harbin Institute of Technology, 2015. [116] Lee S, Kim S. Analysis and optimal design of a new 6 DOF parallel type haptic device[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2006:460-465. [117] Bassan H, Talasaz A, Patel R V. Design and characterization of a 7-DOF haptic interface for a minimally invasive surgery test-bed[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2009:4098-4103. [118] 张玉茹,曹永刚,王党校,等.六自由度力觉人机交互装置,中国:CN101003133A[P].2007-07-25.Zhang Y R, Cao Y G, Wang D X, et al. Force sense man-machine interaction device with six degrees of freedom, China:CN101003133A[P]. 2007-07-25. [119] Lee W, Shih C. Control and breakthrough detection of a three-axis robotic bone drilling system[J]. Mechatronics, 2006, 16(2):73-84. [120] Omisore O M, Han S, Ren L, et al. A fuzzy-PD model for master-slave tracking in teleoperated robotic surgery[C]//12th IEEE Biomedical Circuits and Systems Conference. Piscataway, USA:IEEE, 2016:70-73. [121] Guo S X, Chen Q R, Xiao N, et al. A fuzzy PID control algorithm for the interventional surgical robot with guide wire feedback force[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2016. DOI:10.1109/ICMA.2016.7558601. [122] Pierezan J, Ayala H H V, da Cruz L F, et al. Improved multiobjective particle swarm optimization for designing PID controllers applied to robotic manipulator[C]//IEEE Symposium on Computational Intelligence in Control and Automation. Piscataway, USA:IEEE, 2014. DOI:10.1109/CICA.2014.7013255. [123] Dominici M, Cortesão R. Model predictive control architec-tures with force feedback for robotic-assisted beating heart surgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2014:2276-2282. [124] Bowthorpe M, Tavakoli M. Generalized predictive control of a surgical robot for beating-heart surgery under delayed and slowly-sampled ultrasound image data[J]. IEEE Robotics and Automation Letters, 2016, 1(2):892-899. [125] Raibert M H, Craig J J. Hybrid position/force control of manipulator[J]. ASME Journal of Dynamic Systems, Measurement, and Control, 1981, 103(2):126-133. [126] Ham R V, Sugar T G, Vanderborght B, et al. Compliant actuator designs[J]. IEEE Robotics and Automation Magazine, 2009, 16(3):81-94. [127] Ott C, Mukherjee R, Nakamura Y. Unified impedance and admittance control[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2010:554-561. [128] 唐宇存,张建法,武帅,等.基于虚拟夹具的手术机器人导纳控制安全策略[J].机器人, 2019, 41(6):842-848. Tang Y C, Zhang J F, Wu S, et al. Safety strategy of surgical robot admittance control based on virtual fixtures[J]. Robot, 2019, 41(6):842-848. [129] 林安迪,干旻峰,葛涵,等.基于模糊模型参考学习控制的手术机器人人机交互[J].机器人, 2019, 41(4):543-550. Lin A D, Gan M F, Ge H, et al. Human-robot interaction for surgical robot based on fuzzy model reference learning control[J]. Robot, 2019, 41(4):543-550. [130] Zemiti N, Ortmaier T, Vitrani M A, et al. A force controlled laparoscopic surgical robot without distal force sensing[J]. Springer Tracts in Advanced Robotics, 2015, 21(1):153-164. [131] Jayender J, Patel R V, Nikumb S. Robot-assisted active catheter insertion:Algorithms and experiments[J]. International Journal of Robotics Research, 2009, 28(9):1101-1117. [132] Su H, Sandoval J, Makhdoomi M, et al. Safety-enhanced human-robot interaction control of redundant robot for teleoperated minimally invasive surgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2018:6611-6616. [133] Haouchine N, Dequidt J, Peterlik I, et al. Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery[C]//IEEE International Symposium on Mixed and Augmented Reality. Piscataway, USA:IEEE, 2013:199-208. [134] Cash D M, Miga M I, Sinha T K, et al. Compensating for intraoperative soft-tissue deformations using incomplete surface data and finite elements[J]. IEEE Transactions on Medical Imaging, 2005, 24(11):1479-1491. [135] Thompson S, Totz J, Song Y, et al. Accuracy validation of an image guided laparoscopy system for liver resection[C]//Proceedings of SPIE, Vol.9415. Bellingham, USA:SPIE, 2015:No.941509. [136] Su L M, Vagvolgyi B P, Agarwal R, et al. Augmented reality during robot-assisted laparoscopic partial nephrectomy:Toward real-time 3D-CT to stereoscopic video registration[J]. Urology, 2009, 73(4):896-900. [137] Pessaux P, Diana M, Soler L, et al. Towards cybernetic surgery:Robotic and augmented reality-assisted liver segmentectomy[J]. Langenbecks Archives of Surgery, 2015, 400:381-385. [138] 王田苗,张晓会,张学斌,等.腹腔镜增强现实导航的研究进展综述[J].机器人, 2019, 41(1):124-136. Wang T M, Zhang X H, Zhang X B, et al. Research progresses in laparoscopic augmented reality navigation[J]. Robot, 2019, 41(1):124-136. [139] Marayong P, Li M, Okamura A M, et al. Spatial motion constraints:Theory and demonstrations for robot guidance using virtual fixtures[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2003:1954-1959. [140] Abbott J, Marayong P, Okamura A. Haptic virtual fixtures for robot-assisted manipulation[C]//Robotics Research:Results of the 12th International Symposium. Berlin, Germany:Springer, 2005:49-64. [141] Abbott J J, Okamura A M. Virtual fixture architectures for telemanipulation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2003:2798-2805. [142] Zheng Q W, He Y C, Qi X Z, et al. Automatic tracking motion based on flexible forbidden virtual fixtures design in robot assisted nasal surgery[C]//IEEE 8th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Piscataway, USA:IEEE, 2018:271-275.