Design of Exoskeletal Teleoperation Master Device and Research on Master-slave Isomerism Mapping Algorithm
LI Jialin1,2,3, YANG Yang1,2, YANG Tie1,2, ZHAO Liang1,2, YU Peng1,2
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; 3. College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Abstract:In order to make the robot adapt to the complex teleoperation task better, the exoskeletal master device in teleoperation which can accurately obtain the movement information of human upper limb is developed. With the isomerism mapping algorithm, it can realize the teleoperation of the 6-DOF (degree of freedom) cooperative robotic manipulators. Firstly, the wearable 8-DOF exoskeletal master device (7-DOF arm, 1-DOF hand) is designed based on the bionic structure of human body. Secondly, the kinematic model of teleoperation system is established by a modified D-H (Denavit-Hartenberg) method, the workspace simulation is carried out based on the robotics toolbox in Matlab, and a master-slave isomerism mapping algorithm is designed. Finally, the operability of the exoskeletal master device in the teleoperation system and the feasibility of the isomerism mapping algorithm in the workspace are verified by experiments. The experiments show that the exoskeletal master device can control the slave robot, and ensure the consistency of the position and posture between the master and slave ends. It can reproduce the fine motion of the human upper limb in a wide range of workspace. The master-slave following error is 2 mm, and the workspace is similar to the hemispherical shape with a diameter of 1.08 m. The wearable exoskeletal master device enables the operator to participate in the teleoperation system more intuitively, and assists the operator to complete the delicate and complex tasks more efficiently.
[1] 何玉庆,赵忆文,韩建达,等.与人共融——机器人技术发展的新趋势[J].机器人产业,2015(5):74-80.He Y Q, Zhao Y W, Han J D, et al. Co-existence with humans-The new trend of robot technology development[J]. Robotics Industry, 2015(5):74-80. [2] Mersha A Y, Stramigioli S, Carloni R. On bilateral teleoperation of aerial robots[J]. IEEE Transactions on Robotics, 2014, 30(1):258-274. [3] Glas D F, Kanda T, Ishiguro H, et al. Simultaneous teleoperation of multiple social robots[C]//2008 3rd ACM/IEEE International Conference on Human-Robot Interaction. Piscataway, USA:IEEE, 2008, 42(3):311-318. [4] Nuño E, Basañez L, Ortega R. Passivity-based control for bilateral teleoperation:A tutorial[J]. Automatica, 2011, 47(3):485-495. [5] Rebelo J, Sednaoui T, Exter E B D, et al. Bilateral robot teleoperation:A wearable arm exoskeleton featuring an intuitive user interface[J]. IEEE Robotics and Automation Magazine, 2014, 21(4):62-69. [6] 崔建伟.力觉临场感系统中的异构式手控器设计[D].南京:东南大学,2004.Cui J W. Design of heterogeneous hand controller in force sensing telepresence system[D]. Nanjing:Southeast University, 2004. [7] Liu Y C, Chopra N. Controlled synchronization of robotic manipulators in the task space[J]. IEEE Transactions on Robotics, 2012, 28(1):268-275. [8] 汤卿,刘丝丝,尚留记,等.基于KUKA工业机器人的遥操作控制系统设计与异构主从控制方法研究[J].四川大学学报(工程科学版),2016,48(1):180-185.Tang Q, Liu S S, Shang L J, et al. Design of teleoperation system of KUKA industrial robot and the control algorithm with heterogeneous master/slave structure[J]. Journal of Sichuan University (Engineering Science Edition), 2016, 48(1):180-185. [9] 严水峰.主从异构型遥操作机器人工作空间映射与运动控制研究[D].杭州:浙江大学,2017.Yan S F. Research on workspace mapping and motion control of master-slave heterogeneous teleoperation robots[D]. Hangzhou:Zhejiang University, 2017. [10] 熊鹏文,雷耀,李鸣.基于GRNN的人机交互下遥操作力预测方法[J].东南大学学报(自然科学版),2018,48(6):1130-1136.Xiong P W, Lei Y, Li M. Teleoperation force perception method in human-computer interaction based on GRNN[J]. Journal of Southeast University (Natural Science Edition), 2018, 48(6):1130-1136. [11] 王朝阳,曲家迪,张福海,等.基于Kinect的类人机械臂关节运动直接示教[J].机器人,2017,39(5):697-703.Wang C Y, Qu J D, Zhang F H, et al. Direct teaching in joint space for humanoid manipulator using Kinect[J]. Robot, 2017, 39(5):697-703. [12] 刘爽,朱国栋.基于操作者表现的机器人遥操作方法[J].机器人,2018,40(4):540-550.Liu S, Zhu G D. Robot teleoperation method based on operator performance[J]. Robot, 2018, 40(4):540-550. [13] 卢明林,张宇,张攀峰,等.基于遥操作的焊接机器人连续轨迹系统设计[J].机械设计与制造,2019,336(2):238-241,245.Lu M L, Zhang Y, Zhang P F, et al. The continuous path control system design of welding robot based on teleoperation[J]. Mechanical Design and Manufacture, 2019, 336(2):238-241,245. [14] 张佳林,黎兰,刘相新.可穿戴外骨骼机器人的发展现状与应用研究[J].机械与电子,2018,36(3):77-80.Zhang J L, Li L, Liu X X. Development and application of wearable exoskeleton robot[J]. Machinery and Electronics, 2018, 36(3):77-80. [15] 邓明君.一种液压驱动上肢外骨骼机器人设计[D].长沙:国防科学技术大学,2013.Deng M J. Design of a hydraulic driven exoskeleton robot[D]. Changsha:National University of Defense Science and Technology, 2013. [16] 张宇星.基于表面肌电信号控制的七自由度上肢外骨骼机器人研究[D].哈尔滨:哈尔滨工业大学,2018.Zhang Y X. Research on exoskeleton robot with seven degrees of freedom based on sEMG signal control[D]. Harbin:Harbin Institute of Technology, 2018. [17] 孙定阳,沈浩,郭朝,等.绳驱动柔性上肢外骨骼机器人设计与控制[J].机器人,2019,41(6):834-841.Sun D Y, Shen H, Guo C, et al. Design and control of a rope-driven flexible upper extremity exoskeleton robot[J]. Robot, 2019, 41(6):834-841. [18] Suleiman W, Yoshida E, Kanehiro F, et al. On human motion imitation by humanoid robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2008:2697-2704. [19] Lee C H, Choi J, Lee H, et al. Exoskeletal master device for dual arm robot teaching[J]. Mechatronics, 2017, 43(2):76-85. [20] Mallwitz M, Will N, Teiwes J, et al. The Capio active upper body exoskeleton and its application for teleoperation[C]//13th Symposium on Advanced Space Technologies in Robotics and Automation. 2015.