Motion Drive and Multi-mode Control Method of an Electric Parallel Six Wheel-Legged Robot
CHEN Zhihua1,2, WANG Shoukun1,2, WANG Junzheng1,2, XU Kang1,2, WANG Xiuwen1,2, LIU Daohe1,2, LEI Tao1,2, SI Jinge1,2
1. State Key Laboratory of Intelligent Control and Decision of Complex Systems, School of Automation, Beijing Institute of Technology, Beijing 100081, China; 2. Key Laboratory of Servo Motion System Drive and Control, Ministry of Industry and Information Technology, School of Automation, Beijing Institute of Technology, Beijing 100081, China
陈志华, 汪首坤, 王军政, 徐康, 王修文, 刘道和, 雷涛, 司金戈. 电动并联六轮足机器人的运动驱动与多模态控制方法[J]. 机器人, 2020, 42(5): 534-549.DOI: 10.13973/j.cnki.robot.190524.
CHEN Zhihua, WANG Shoukun, WANG Junzheng, XU Kang, WANG Xiuwen, LIU Daohe, LEI Tao, SI Jinge. Motion Drive and Multi-mode Control Method of an Electric Parallel Six Wheel-Legged Robot. ROBOT, 2020, 42(5): 534-549. DOI: 10.13973/j.cnki.robot.190524.
Abstract:A parallel six wheel-legged mobile robot is proposed. The robot adopts a multi-mode Stewart leg structure with large load capacity, which integrates the advantages of wheeled motion and legged motion, and can realize legged, wheeled and wheel-legged compound motions. Firstly, the design idea of the robot is described, and the hardware system and control system of the electric parallel six wheel-legged robot are designed. Secondly, a complete set of legged "triangle" gaits and a stable walking algorithm are designed for the legged motion mode, which can reduce the vertical impact between the foot and the ground, and prevent foot motion from dragging or skidding. For the wheeled motion mode, the principles of cooperative control and steering of 6 wheels are designed and introduced. For the wheel-legged compound motion mode, the principles of variable height, variable support surface, variable wheel track and active vibration isolation controls are introduced with the analysis emphasis on active vibration isolation control and variable wheel track control, which can realize active vibration isolation and attitude stabilization control, and improve the stability of the wheel-legged compound motion of the robot on rough terrain. Finally, the legged, wheeled and wheel-legged compound motion modes of the electric parallel six wheel-legged robot are tested. The experimental results verify the feasibility of the design of the parallel six wheel-legged mobile robot and the effectiveness of the driving and control algorithm of each motion mode.
[1] Hong D K, Hwang W, Lee J Y. Design, analysis, and experimental validation of a permanent magnet synchronous motor for articulated robot applications[J]. IEEE Transactions on Magnetics, 2018, 54(3). DOI:10.1109/TMAG.2017.2752080. [2] 柳倩,桂建军,杨小薇.工业机器人传感控制技术研究现状及发展态势——基于专利文献计量分析视角[J].机器人,2016,38(5):612-620.Liu Q, Gui J J, Yang X W. Research status and development trends for sensing and control technologies of industrial robot from the viewpoint of patent analysis[J]. Robot, 2016, 38(5):612-620. [3] 王天然.机器人技术的发展[J].机器人,2017,39(4):385-386.Wang T R. Development of robotics[J]. Robot, 2017, 39(4):385-386. [4] Sorour M, Cherubini A, Khelloufi A, et al. Complementary-route based ICR control for steerable wheeled mobile robots[J]. Robotics and Autonomous Systems, 2019, 118:131-143. [5] Chen J, Liang Z C, Zhu Y H, et al. Improving kinematic flexibility and walking performance of a six-legged robot by rationally designing leg morphology[J]. Journal of Bionic Engineering, 2019, 16(4):608-620. [6] Fang L, Gao F. Type design and behavior control for six legged robots[J]. Chinese Journal of Mechanical Engineering, 2018, 31(3). DOI:10.1186/s10033-018-0259-9. [7] 刘彦伟,刘三娃,梅涛,等.一种仿生爪刺式履带爬壁机器人设计与分析[J].机器人,2019,41(4):526-533.Liu Y W, Liu S W, Mei T, et al. Design and analysis of a bio-inspired tracked wall-climbing robot with spines[J]. Robot, 2019, 41(4):526-533. [8] 王海涛,彭熙凤,林本末.软体机器人研究进展[J].华南理工大学学报(自然科学版),2020,48(2):94-106.Wang H T, Peng X F, Lin B M. Research development of soft robots[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(2):94-106. [9] 周坤,李川,李超,等.面向未知复杂地形的四足机器人运动规划方法[J].机械工程学报,2020,56(2):210-219.Zhou K, Li C, Li C, et al. Motion planning method for quadruped robots walking on unknown rough terrain[J]. Journal of Mechanical Engineering, 2020, 56(2):210-219. [10] 李满宏,张明路,张建华,等.六足机器人关键技术综述[J].机械设计,2015,32(10):1-8.Li M H, Zhang M L, Zhang J H, et al. Review on key technology of the hexapod robot[J]. Journal of Machine Design, 2015, 32(10):1-8. [11] 王冠宇,丁亮,高海波,等.增强爬坡能力的六足机器人分步二次规划足力分配算法及试验验证[J].机械工程学报,2019,55(21):11-20.Wang G Y, Ding L, Gao H B, et al. Decomposed QP CFDA for hexapod robots to enhance the slope-climbing ability and experimental validation[J]. Journal of Mechanical Engineering, 2019, 55(21):11-20. [12] 陈杰.六足机器人崎岖地形步行运动规划与控制策略研究[D].哈尔滨:哈尔滨工业大学,2017.Chen J. Research on motion planning and control strategy of hexapod robot walking in rugged terrain[J]. Harbin:Harbin Institute of Technology, 2017. [13] Xu K, Wang S K, Yue B K, et al. Obstacle-negotiation performance on challenging terrain for a parallel leg-wheeled robot[J]. Journal of Mechanical Science and Technology, 2020, 34(1):377-386. [14] de Viragh Y, Bjelonic M, Bellicoso C D, et al. Trajectory optimization for wheeled-legged quadrupedal robots using linearized ZMP constraints[J]. IEEE Robotics and Automation Letters, 2019, 4(2):1633-1640. [15] Halme A, Luksch T, Ylönen S. Biomimicing motion control of the WorkPartner robot[J]. Industrial Robot, 2004, 31(2):209-217. [16] Estremera J, Cobano J A, Gonzalez de Santos P. Continuous free-crab gaits for hexapod robots on a natural terrain with forbidden zones:An application to humanitarian demining[J]. Robotics and Autonomous Systems, 2010, 58(5):700-711. [17] Grand C, Benamar F, Plumet F. Motion kinematics analysis of wheeled-legged rover over 3D surface with posture adaptation[J]. Mechanism and Machine Theory, 2010, 45(3):477-495. [18] Wang P F, Huang B, Sun L N. Walking research on multi-motion mode quadruped bionic robot based on moving ZMP[C]//IEEE International Conference on Mechatronics and Automation. Piscataway, USA:IEEE, 2005:1935-1940. [19] 郭丽峰,陈恳,赵旦谱.一种轮腿式变结构移动机器人研究[J].制造业自动化,2009,31(10):1-6.Guo L F, Chen K, Zhao D P. Study on a wheel-legged hybrid mobile robot[J]. Manufacturing Automation, 2009, 31(10):1-6. [20] 郝仁剑,王军政,史大威,等.基于速度矢量的四足机器人间歇步态规划方法[J].机器人,2016,38(5):540-549.Hao R J, Wang J Z, Shi D W, et al. Intermittent gait planning method of quadruped robot based on velocity vector[J]. Robot, 2016, 38(5):540-549. [21] Chen Z H, Wang S K, Xu K, et al. Research on high precision control of joint position servo system for hydraulic quadruped robot[C]//38th Chinese Control Conference. Piscataway, USA:IEEE, 2019:755-760. [22] Karssen J G D, Haberland M, Wisse M, et al. The effects of swing-leg retraction on running performance:Analysis, simulation, and experiment[J]. Robotica, 2015, 33(10):2137-2155. [23] He Y D, Wang J Z, Ke X F, et al. Stable walking for legged robots[J]. Journal of Mechanical Engineering, 2016, 52(21):1-7.