Load Estimation of Manipulator Based on the Optimal Sequence of Exciting Poses
HOU Che1,2,3, ZHAO Yiwen1,2, ZHANG Bi1,2, LI Yingli1,3, ZHAO Xingang1,2
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:The gravity compensation method is widely used in the robot system composed of the links and the rotating structures. The replacement of the robot end-effector brings uncertainty into the compensation model. For this problem, an offline identification method of load parameters based on joint torque and position information of the robot is proposed. Based on the robot statics method, two calculation models of load parameters are proposed, and the least squares solution of the load parameters is obtained by collecting the joint torque and position information of the manipulator under multiple static poses. Furthermore, the problem of choosing the poses for identification is studied, and a multi-objective optimization problem is proposed to guarantee the accuracy and simplicity of identification simultaneously. The multi-objective particle swarm optimization method is used to obtain the optimal poses for identification. According to the identified load parameters, the calculation method of the load gravity compensation for each joint of the manipulator is given. The experimental results show that the proposed method is of high identification accuracy. The minimum value of the identification error of the load mass is 0.007 06 kg, and the maximum value is 0.151 kg. The minimum value of the identification error of the load centroid position is 0.025 4 m, and the maximum value is 0.122 m. The feasibility and effectiveness of the above method are verified.
[1] 吴晓,朱世强,刘松国.基于PDAG算法的工业机器人轨迹跟踪[J].中国机械工程,2010,21(19):2302-2307. Wu X, Zhu S Q, Liu S G. PDAG algorithm based trajectory tracking for industrial robots[J]. China Mechanical Engineering, 2010, 21(19):2302-2307. [2] Ott C, Albu-Schäffer A, Kugi A, et al. A passivity based Cartesian impedance controller for flexible joint robots. Part I:Torque feedback and gravity compensation[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2004:2659-2665. [3] 何雷.基于外骨骼机构和静平衡原理的重力补偿技术研究[D].北京:北京邮电大学,2013. He L. The gravity compensation study based on the exoskeleton institutions and static balance principle[D]. Beijing:Beijing University of Posts and Telecommunications, 2013. [4] 朱宇光,张远山,杨智勇,等.基于重力补偿的下肢骨骼服位置控制研究[J].计算机仿真,2010,27(11):156-158. Zhu Y G, Zhang Y S, Yang Z Y, et al. Research on position control with gravity compensation of lower extreme exoskeleton suit[J]. Computer Simulation, 2010, 27(11):156-158. [5] 徐文福,梁斌,李成,等.空间机器人微重力模拟实验系统研究综述[J].机器人,2009,31(1):88-96. Xu W F, Liang B, Li C, et al. A review on simulated micro-gravity experiment system of space robot[J]. Robot, 2009, 31(1):88-96. [6] 樊绍巍,宗华,邱景辉,等.机器人灵巧手柔性关节自适应阻抗控制[J].电机与控制学报,2012,16(12):78-86. Fan S W, Zong H, Qiu J H, et al. Adaptive impedance control for dexterous robot hand with elastic joint[J]. Electric Machines and Control, 2012, 16(12):78-86. [7] 路明,赵忆文,姜运祥.脊柱微创主从式手术机器人阻抗控制系统研制[J].机器人,2017,39(3):371-376. Lu M, Zhao Y W, Jiang Y X. Design of master-slave operation robot based on impedance control in minimally invasive spinal surgery[J]. Robot, 2017, 39(3):371-376. [8] Luca A D, Siciliano B, Zollo L. PD control with on-line gravity compensation for robots with elastic joints:Theory and experiments[J]. Automatica, 2005, 41(10):1809-1819. [9] Zollo L, Siciliano B, Luca A D, et al. PD control with on-line gravity compensation for robots with flexible links[C]//Euro-pean Control Conference. Piscataway, USA:IEEE, 2007:4365-4370. [10] Yang C, Huang Q, Jiang H, et al. PD control with gravity compensation for hydraulic 6-DOF parallel manipulator[J]. Mechanism and Machine Theory, 2010, 45(4):666-677. [11] Zavala-Rio A, Santibanez V. Simple extensions of the PD-with-gravity-compensation control law for robot manipulators with bounded inputs[J]. IEEE Transactions on Control Systems Technology, 2006, 14(5):958-965. [12] Zavala-Rio A, Santibanez V. A natural saturating extension of the PD-with-desired-gravity-compensation control law for robot manipulators with bounded inputs[J]. IEEE Transactions on Robotics, 2007, 23(2):386-391. [13] 谢光辉,张进春.一种仿人机器人臂的重力补偿研究[J].机械传动,2010,34(7):26-28. Xie G H, Zhang J C. Experimental research on gravity compensation for humanoid robot arm[J]. Journal of Mechanical Transmission, 2010, 34(7):26-28. [14] Luca A D, Panzieri S. An iterative scheme for learning gravity compensation in flexible robot arms[J]. Automatica, 1994, 30(6):993-1002. [15] 张立建,胡瑞钦,易旺民.基于六维力传感器的工业机器人末端负载受力感知研究[J].自动化学报,2017,43(3):439-447. Zhang L J, Hu R Q, Yi W M. Research on force sensing for the end-load of industrial robot based on a 6-axis force/torque sensor[J]. Acta Automatica Sinica, 2017, 43(3):439-447. [16] 韩静如.基于六维力传感器的机器人力觉示教技术研究[D].广州:华北理工大学,2017. Han J R. Research on the teaching technology of robot with six-axis force sensor[D]. Guangzhou:South China University of Technology, 2017. [17] 李思桥,张玉茹,曹永刚,等.力觉交互设备的重力补偿实验研究[J].机械设计与研究,2007,23(1):95-97. Li S Q, Zhang Y R, Cao Y G, et al. Experiment research of gravity compensation for haptic device[J]. Journal of Machine Design and Research, 2007, 23(1):95-97. [18] 侯澈,王争,赵忆文,等.面向直接示教的机器人负载自适应零力控制[J].机器人,2017,39(4):439-448. Hou C, Wang Z, Zhao Y W, et al. Load adaptive force-free control for the direct teaching of robots[J]. Robot, 2017, 39(4):439-448. [19] 谢光辉,金敉娜,张进春,等.利用BP-NN算法的机器人臂重力补偿研究[J].自动化仪表,2012,33(2):22-24. Xie G H, Jin M N, Zhang J C, et al. Research on gravity compensation using BP-NN algorithm for robot arm[J]. Process Automation Instrumentation, 2012, 33(2):22-24. [20] 陈友东,季旭东,谷平平,等.无传感器的工业机器人负载识别方法[J].北京航空航天大学学报,2015,41(9):1595-1599. Chen Y D, Ji X D, Gu P P, et al. Identifying method of load for sensorless industrial robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9):1595-1599. [21] Kubela T, Pochyly A, Singule V, et al. Force-torque control methodology for industrial robots applied on finishing operations[M]. Mechatronics:Recent technological and Scientific Advances. Berlin, Germany:Springer, 2012:429-437. [22] 贾树晋,杜斌,岳恒.基于局部搜索与混合多样性策略的多目标粒子群算法[J].控制与决策,2012,27(6):813-818. Jia S J, Du B, Yue H. Local search and hybrid diversity strategy based multi-objective particle swarm optimization algorithm[J]. Control and Decision, 2012, 27(6):813-818.