Abstract:To solve the motor dysfunction due to the stroke or the traffic accidents, a wearable soft knee exoskeleton robot for rehabilitation training is designed. Based on the emphatic introduction of the Hill-muscle-model-based tendon-sheath artificial muscle drive system design and real-time control platform, the derivation process of the fuzzy neural network impedance control algorithm is analyzed. Finally, the rehabilitation training experiment is carried out in the human-machine cooperative training mode, in the conditions of the fixed and the variable impedance parameter control strategies. The influence of the rehabilitation exoskeleton system on the muscle activity of subjects is also compared and analyzed. The experimental results show that the flexor/extensor torques are increased by 9.70% and 9.06% during the constant frequency and amplitude training, and the flexor/extensor torques are increased by 88.34% and 57.68% during variable frequency and amplitude training. Therefore, the stability and the safety of the lower limb rehabilitation robot can be enhanced by selecting the suitable impedance model that conforms to the physiological muscle stiffness characteristics, as well as the human-robot interactive compliance and coordination can be improved.
[1] 孙子科技木,张宝露,王洪娅,等.医养结合型养老机构护理人才培养现状及思考[J].护理学报,2016,23(23):31-34. Sunzi K J M, Zhang B L, Wang H Y, et al. The current situation and thinking of nursing talents training in the combination of medical and nursing institutions[J]. Journal of Nursing, 2016, 23(23):31-34. [2] Lo H S, Xie S Q. Exoskeleton robots for upper-limb rehabilitation:State of the art and future prospects[J]. Medical Engineering & Physics, 2012, 34(3):261-268. [3] 吴青聪,王兴松,吴洪涛,等.上肢康复外骨骼机器人的模糊滑模导纳控制[J].机器人,2018,40(4):457-465. Wu Q C, Wang X S, Wu H T, et al. Fuzzy sliding mode admittance control of the upper limb rehabilitation exoskeleton robot[J]. Robot, 2018, 40(4):457-465. [4] 谢欲晓,白伟,张羽.下肢康复训练机器人的研究现状与趋势[J].中国医疗器械信息,2010,16(2):5-8. Xie Y X, Bai W, Zhang Y. Research on the lower limbs rehabilitative robot[J]. China Medical Device Information, 2010, 16(2):5-8. [5] Colombo G, Wirz M, Dietz V. Driven gait orthosis for improvement of locomotor training in paraplegic patients[J]. Spinal Cord, 2001, 39(5):252-255. [6] Kang J, Martelli D, Vashista V, et al. Robot-driven downward pelvic pull to improve crouch gait in children with cerebral palsy[J]. Science Robotics, 2017, 2(8). DOI:10.1126/scirobotics. aan2634. [7] Chen G, Qi P, Guo Z, et al. Mechanical design and evaluation of a compact portable knee-ankle-foot robot for gait rehabilitation[J]. Mechanism and Machine Theory, 2016, 103:51-64. [8] 张立勋,赵凌燕,胡明茂.下肢康复训练机器人的重心轨迹控制研究[J].应用科技,2005,32(4):54-56. Zhang L X, Zhao L Y, Hu M M. Study of COM-control system of lower limbs rehabilitative robot[J]. Applied Science and Technology, 2005, 32(4):54-56. [9] Fan Y J, Yin Y H. Active and progressive exoskeleton rehabilitation using multisource information fusion from EMG and force-position EPP[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(12):3314-3321. [10] Yang W, Yang C J, Xu T. Human hip joint center analysis for biomechanical design of a hip joint exoskeleton[J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(8):792-802. [11] 贾山,韩亚丽,路新亮,等.基于基于人体特殊步态分析的下肢外骨骼机构设计[J].机器人,2014,32(4):392-401. Jia S, Han Y L, Lu X L, et al. Design of lower extremity exoskeleton based on analysis on special human gaits[J]. Robot, 2014, 32(4):392-401. [12] Ergin M A, Patoglu V. A self-adjusting knee exoskeleton for robot-assisted treatment of knee injuries[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2011:4917-4922. [13] Asbeck A T, Dyer R J, Larusson A F, et al. Biologically inspired soft exosuit[C]//13th International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2013. DOI:10.1109/ ICORR.2013.6650455. [14] Bobby M. SRI robtics super flex exosuit[EB/OL].[2018-12-20]. http://exoskeletonreport.com/2016/04/sri-robotics-super-flex-exosuit. [15] Akdogan E, Tacgin E, Adli M A. Knee rehabilitation using an intelligent robotic system[J]. Journal of Intelligent Manufacturing, 2009, 20(2):195-202. [16] Banala S K, Kulpe A, Agrawal S K. A powered leg orthosis for gait rehabilitation of motor-impaired patients[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2007:4140-4145. [17] 文忠,钱晋武,沈林勇,等.基于阻抗控制的步行康复训练机器人的轨迹自适应[J].机器人,2011,33(1):142-149. Wen Z, Qian J W, Shen L Y, et al. Trajectory adaptation for impedance control based walking rehabilitation training robot[J]. Robot, 2011, 33(1):142-149. [18] Falisse A, van Rossom S, Jonkers I, et al. EMG-driven optimal estimation of subject-specific Hill model muscle-tendon parameters of the knee joint actuators[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(9):2253-2262. [19] Shao Z Y, Wu Q C, Chen B, et al. Force and deformation transmission characteristics of a compliant tendon-sheath actuation system based on Hill-type muscle model[J]. Proceedings of the Institution of Mechanical Engineers, Part H:Journal of Engineering in Medicine, 2019, 233(7):695-705. [20] Shi P F, Lei C X, Zhang Y K, et al. PID control of the mechanical legs based on fuzzy adaptive[C]//IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Piscataway, USA:IEEE, 2015:1965-1970. [21] Jung S, Hsia T C, Bonitz R G. Force tracking impedance control of robot manipulators under unknown environment[J]. IEEE Transactions on Control Systems Technology, 2004, 12(3):474-483. [22] 何金保,骆再飞,李国君,等.基于下肢病情估计的康复机器人自适应阻抗控制[J].宁波工程学院学报, 2014, 26(4):1-6. He J B, Luo Z F, Li G J, et al. Adaptive impedance control of rehabilitation robot based on lower limb condition estimation[J]. Journal of Ningbo University of Technology, 2014, 26(4):1-6. [23] 徐国政,宋爱国,李会军.基于模糊逻辑的上肢康复机器人阻抗控制实验研究[J].机器人, 2010, 32(6):792-798. Xu G Z, Song A G, Li H J. Experimental study on fuzzy-logicbased impedance control for upper-limb rehabilitation robot[J]. Robot, 2010, 32(6):792-798. [24] Lu L H, Wu Q C, Chen X, et al. Development of a sEMG-based torque estimation control strategy for a soft elbow exoskeleton[J]. Robotics and Autonomous Systems, 2018, 111:88-98.