倪聪, 杨崇倡, 刘香玉, 冯培, 张春燕. 基于Klann连杆的球腿复合机器人的设计与研究[J]. 机器人, 2020, 42(4): 436-447.DOI: 10.13973/j.cnki.robot.190513.
NI Cong, YANG Chongchang, LIU Xiangyu, FENG Pei, ZHANG Chunyan. Design and Research on a Ball-Legged Compound Robot Based on Klann Linkage. ROBOT, 2020, 42(4): 436-447. DOI: 10.13973/j.cnki.robot.190513.
Abstract:Combining the advantages of spherical and quadruped robots, an innovative ball-legged compound mobile robot is proposed, which can adapt to various working environments. In the rolling mode, the linear rolling and roll steering are analyzed to verify the feasibility of robot steering. In the quadruped mode, the coordinates of foot tips are obtained by the complex vector method, and the foot trajectory curve drawn with Matlab is compared with the Adams simulation curve, which verifies the correctness of the theory. Taking the elevation of leg as the objective function, the optimal trajectory of the foot tip is obtained by the non-linear programming algorithm. The centroid projection method is used to analyze the stability of the robot in quadruped walking. A simulation model is established to test the quadruped straight movement, quadruped steering, quadruped climbing and sphere rolling modes. A prototype is manufactured and a series of experiments are conducted to verify the feasibility of the design and various motion modes.
[1] Zheng L, Guo S X, Gu S X. The communication and stability evaluation of amphibious spherical robots[J]. Microsystem Technologies, 2019, 25(7):2625-2636. [2] Li W, Zhan Q. Kinematics-based four-state trajectory tracking control of a spherical mobile robot driven by a 2-DOF pendulum[J]. Chinese Journal of Aeronautics, 2019, 32(6):1530-1540. [3] El Haiek D, Aboulissane B, El Bakkali L, et al. Optimal trajectory planning for spherical robot using evolutionary algorithms[C]//12th International Conference Interdisciplinarity in Engineering. Amsterdam, Netherlands:Elsevier, 2019:960-968. [4] Kanoulas D, Tsagarakis N G, Vona M. Curved patch mapping and tracking for irregular terrain modeling:Application to bipedal robot foot placement[J]. Robotics and Autonomous Systems, 2019, 119:13-30. [5] Van T N, Daichi K, Hiroshi H. Development of foot structure for humanoid robot using topology optimization[J]. Advanced Engineering Forum, 2018, 29:34-45. DOI:10.4028/www.scienti fic.net/AEF.29.34. [6] Jia W C, Huang Z S, Sun Y, et al. Toward a novel deformable robot mechanism to transition between spherical rolling and quadruped walking[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2017:1539-1544. [7] 符景名.具有多运动模式的球腿复合机器人的研究[D]. 哈尔滨:哈尔滨工业大学, 2017. Fu J M. Research on a ball-leg composite robot with multiple motion modes[D]. Harbin:Harbin University of Technology, 2017. [8] Aoki T, Ito S, Sei Y. Development of quadruped walking robot with spherical shell-mechanical design for rotational locomotion[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2015:5706-5711. [9] 马双龙.正交位双全向轮驱动球形机器人的机构分析与研究[D].北京:北京交通大学, 2017. Ma S L. Mechanism analysis and research of orthogonal bidirectional wheel driven spherical robot[D]. Beijing:Beijing Jiaotong University, 2017. [10] 张建民.机电一体化系统设计[M].北京:高等教育出版社, 2012. Zhang J M. Design of mechatronics systems[M]. Beijing:Higher Education Press, 2012. [11] 陈奇,张祺,姚志刚,等.面向足式机器人腿部运动的组合机构反求设计[J].机械与电子, 2018, 36(5):71-74,80. Chen Q, Zhang Q, Yao Z G, et al Inverse design of combined mechanism for leg movement of walking robot[J]. Machinery and Electronics, 2018, 36(5):71-74,80. [12] 倪振松,廖启征,魏世民,等.基于切比雪夫逼近的空间RSSH机构运动分析[J].北京工业大学学报, 2011, 37(12):1767-1772. Ni Z S, Liao Q Z, Wei S M, et al. Kinematics of RSSH analysis research based on Chebyshev approximation[J]. Journal of Beijing University of Technology, 2011, 37(12):1767-1772. [13] 韩建友,袁玉芹,吕翔宇,等.平面多杆机构杆组自动生成方法[J].机械工程学报, 2015, 51(19):1-10. Han J Y, Yuan Y Q, Lü X Y, et al. Methodology for the automatic generation of Assur groups from planar multi-bar linkages[J]. Journal of Mechanical Engineering, 2015, 51(19):1-10. [14] 臧红彬,沈连婠. Theo Jansen仿生腿研究及其机构优化设计[J].机械工程学报, 2017, 53(15):101-109. Zang H B, Shen L G. Research and optimization design of mechanism for Theo Jansen bionic leg[J]. Journal of Mechanical Engineering, 2017, 53(15):101-109. [15] Komoda K, Wagatsuma H. Energy-efficacy comparisons and multibody dynamics analyses of legged robots with different closed-loop mechanisms[J]. Multibody System Dynamics, 2017, 40(2):123-153. [16] 李满宏,张明路,张建华,等.六足机器人关键技术综述[J].机械设计, 2015, 32(10):1-8. Li M H, Zhang M L, Zhang J H, et al. Review on key technology of the hexapod robot[J]. Journal of Machine Design, 2015, 32(10):1-8. [17] Mukherjee R, Minor M A, Pukrushpan J T. Motion planning for a spherical mobile robot:Revisiting the classical ball-plate problem[J]. Transactions of the ASME, 2002, 124(4):502-511. [18] 华大年,华志宏.连杆机构设计与应用创新[M].北京:机械工业出版社, 2008. Hua D N, Hua Z H. Innovation in design and application of linkage mechanisms[M]. Beijing:China Machine Press, 2008. [19] Li J Q, Cong D C, Yang Z D. A method of foot trajectory generation for quadruped robots in swing phase to optimize the joint torque[C]//4th International Conference on Mechanical and Aeronautical Engineering. Bristol, UK:Institute of Physics Publishing, 2019. DOI:10.1088/1757-899X/491/1/012002. [20] 曲秀全.基于MATLAB/Simulink平面连杆机构的动态仿真[M].哈尔滨:哈尔滨工业大学出版社, 2007. Qu X Q. Dynamic simulation of planar linkage mechanism based on MATLAB/Simulink[M]. Harbin:Harbin University of Technology Press, 2007. [21] 陈峰华. ADAMS 2016虚拟样机技术从入门到精通[M]. 北京:清华大学出版社, 2017. Chen F H. ADAMS 2016 virtual prototyping technology:From introduction to proficiency[M]. Beijing:Tsinghua University Press, 2017.