Turning Control of Multiple UAVs Imitating the Super-Maneuver Behavior in Massive Starlings
YU Yueping1, DUAN Haibin1, FAN Yanming2, HUO Mengzhen1, YANG Qing1, WEI Chen1
1. Bio-inspired Autonomous Flight System Research Group, School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China; 2. Shenyang Aircraft Design and Research Institute, Aviation Industry Corporation of China, Shenyang 110035, China
Abstract:A turning control method of UAV (unmanned aerial vehicles) swarm is proposed by mimicking the supermaneuver behaviors of massive starlings, to achieve rapid and uniform turning of the large-scale UAV swarm in dynamic uncertain environments. Firstly, three mechanisms including neighbor selection, local interaction, and information transfer are established by analyzing the super-maneuver behaviors of massive starlings, which are mapped to the turning control of UAV swarm. Based these mechanisms, an improved social force model is applied to the turning control of UAV swarm, and thus the UAV swarm can realize fast aggregation and speed polarization when there isn't any external stimulus. In the case of external stimulus, the UAVs switch the mode and the whole UAV swarm can quickly complete the super-maneuver turning to avoid dangers. Finally, simulation experiment results verify that the UAV swarm can not only meet the requirements of turning curvature, but also maintain the uniformity of the swarm motion based on the proposed model.
[1] 段海滨,邱华鑫.基于群体智能的无人机集群自主控制[M].北京:科学出版社, 2018. Duan H B. Qiu H X. Unmanned aerial vehicle swarm autonomous control based on swarm intelligence[M]. Beijing:Science Press, 2018. [2] Hota S, Ghose D. Optimal trajectory planning for unmanned aerial vehicles in three-dimensional space[J]. Journal of Aircraft, 2014, 51(2):681-688. DOI:10.2514/1.c032245. [3] Yang J L, Zhu J H. A hybrid NDI control method for the highalpha super-maneuver flight control[C]//American Control Conference. Piscataway, USA:IEEE, 2016:6747-6753. DOI:10. 1109/ACC.2016.7526734. [4] Cavagna A, del Castello L, Giardina I, et al. Flocking and turning:A new model for self-organized collective motion[J]. Journal of Statistical Physics, 2015, 158(3):601-627. DOI:10.1007/s10955-014-1119-3. [5] 段海滨,霍梦真,范彦铭.仿鹰群智能的无人机集群协同对抗飞行验证[J].控制理论与应用, 2018, 35(12):1812-1819. Duan H B, Huo M Z, Fan Y M. Flight verification of multiple UAVs collaborative air combat imitating the intelligent behavior in hawks[J]. Control Theory and Applications, 2018, 35(12):1812-1819. DOI:10.7641/CTA.2018.80433. [6] 杨庆,段海滨.仿鸿雁编队的无人机集群飞行验证[J].工程科学学报, 2019, 41(12):1599-1608. Yang Q, Duan H B. Verification of unmanned aerial vehicle swarm behavioral mechanism underlying the formation of Anser cygnoides[J]. Chinese Journal of Engineering, 2019, 41(12):1599-1608. DOI:10.13374/j.issn2095-9389.2018.12. 18.001. [7] 邱华鑫,段海滨,范彦铭.基于鸽群行为机制的多无人机自主编队[J].控制理论与应用, 2015, 32(10):1298-1304. Qiu H X, Duan H B, Fan Y M. Multiple unmanned aerial vehicle autonomous formation based on the behavior mechanism in pigeon flocks[J]. Control Theory and Applications, 2015, 32(10):1298-1304. DOI:10.7641/CTA.2015.50314. [8] 周子为,段海滨,范彦铭.仿雁群行为机制的多无人机紧密编队[J].中国科学, 2017, 47(3):230-238. Zhou Z W, Duan H B, Fan Y M. Unmanned aerial vehicle close formation control based on the behavior in wild geese[J]. Science Sinica:Technologica, 2017, 47(3):230-238. DOI:CNKI:SUN:JEXK.0.2017-03-002. [9] Ballerini M, Cabibbo N, Candelier R, et al. Empirical investigation of starling flocks:A benchmark study in collective animal behaviour[J]. Animal Behaviour, 2008, 76(1):201-215. DOI:10.1016/j.anbehav.2008.02.004. [10] Cavagna A, Cimarelli A, Giardina I, et al. Scale-free correlations in starling flocks[J]. Proceedings of the National Academy of Sciences, 2010, 107(26):11865-11870. DOI:10.2307/20724163. [11] Bialek W, Cavagna A, Giardina I, et al. Statistical mechanics for natural flocks of birds[J]. Proceedings of the National Academy of Sciences, 2012, 109(13):4786-4791. DOI:10.1073/pnas. 1118633109. [12] Roshanian J, Yazdani S, Barzamini F. Application of PIV and Delaunay triangulation method for satellite angular velocity estimation using star tracker[J]. IEEE Sensors Journal, 2018, 18(24):10105-10114. DOI:10.1109/JSEN.2018.2866950. [13] Attanasi A, Cavagna A, del Castello L, et al. Information transfer and behavioural inertia in starling flocks[J]. Nature Physics, 2014, 10(9):691-696. DOI:10.1038/nphys3035. [14] Vicsek T, Czirok A, Ben-Jacob E, et al. Novel type of phase transition in a system of self-driven particles[J]. Physical Review Letters, 1995, 75(6):1226-1229. DOI:10.1103/PhysRev Lett.75.1226. [15] Storms R F, Carere C, Zoratto F, et al. Complex patterns of collective escape in starling flocks under predation[J]. Behavioral Ecology and Sociobiology, 2019, 73(10):1-10. DOI:10.1007/s00265-018-2609-0. [16] Hogan B G, Hildenbrandt H, Scott-Samuel N E, et al. The confusion effect when attacking simulated three-dimensional starling flocks[J]. Royal Society Open Science, 2017, 4(1). DOI:10.1098/rsos.160564. [17] 雷小康,刘明雍,杨盼盼.基于邻域跟随的群集系统分群控制算法[J].控制与决策, 2013, 28(5):741-745. Lei X K, Liu M Y, Yang P P. Fission control algorithm for swarm based on local following interaction[J]. Control and Decision, 2013, 28(5):741-745. DOI:CNKI:SUN:KZYC.0.2013-05-020. [18] Yang P P, Yan M D, Song J C, et al. Self-organized fissionfusion control algorithm for flocking systems based on intermittent selective interaction[J]. Complexity, 2019, 78. DOI:10. 1155/2019/2187812. [19] Couzin I D, Krause J, James R, et al. Collective memory and spatial sorting in animal groups[J]. Journal of Theoretical Biology, 2002, 218(1):1-11. DOI:10.1006/jtbi.2002.3065. [20] 杨庆.基于欧椋鸟行为机制的固定翼无人机集群自主控制及验证[D].北京:北京航空航天大学, 2019. Yang Q. Fixed-wing UAVs swarm flight control verification based on the behavior mechanism in European starlings[D]. Beijing:Beihang University, 2019.