Abstract:In dynamic environments, the localization and mapping accuracy of the existing simultaneous localization and mapping (SLAM) algorithms will decrease dramatically. For this problem, a binocular vision SLAM algorithm based on dynamic region elimination is proposed. Firstly, the dynamic sparse feature points in the scene are identified by the stereo vision based geometric constraint method, and the scene area is segmented based on the scene depth and color information. Secondly, the dynamic points and the scene segmentation results are used to mark the dynamic regions in the scene, and then eliminate the feature points in the dynamic regions in the existing binocular ORB-SLAM algorithms as well as the impact of dynamic targets in the scene on SLAM accuracy. Finally, the experimental verification of the proposed algorithm is carried out. The recall rate of dynamic region segmentation on the KITTI dataset can reach 92.31%, and it can reach 93.62% in the test of visual guidance in the outdoor environment. Compared with the previous binocular ORB-SLAM algorithm, the straight walking localization accuracy is improved by 82.75%, and the mapping effect is also enhanced significantly. The average processing rate of the algorithm can reach 4.6 frame/s. The results show that the proposed algorithm can significantly improve the localization and mapping accuracy of the binocular vision SLAM algorithm in dynamic scenes, and meets the real-time performance requirement of visual guidance.
[1] 王丽丽.电子导盲仪的发展现状与趋势[J].甘肃科技,2012,28(3):99-100. Wang L L. The present situation and tendency of electronic guide blind instrument[J]. Gansu Science and Technology, 2012, 28(3):99-100. [2] Fernandes H, Costa P, Filipe V, et al. Stereo vision in blind navigation assistance[C]//2010 World Automation Congress. Piscataway, USA:IEEE, 2010. 6pp. [3] Wise E, Li B H, Gallagher T, et al. Indoor navigation for the blind and vision impaired:Where are we and where are we going?[C]//International Conference on Indoor Positioning and Indoor Navigation. Piscataway, USA:IEEE, 2012. DOI:10.1109/IPIN.2012.6418894. [4] Shang W Q, Wei J, Jian C. A machine vision based navigation system for the blind[C]//IEEE International Conference on Computer Science and Automation Engineering. Piscataway, USA:IEEE, 2011:81-85. [5] Wirbel E, Steux B, Bonnabel S, et al. Humanoid robot navigation:From a visual SLAM to a visual compass[C]//10th IEEE International Conference on Networking, Sensing and Control. Piscataway, USA:IEEE, 2013:678-683. [6] 邸凯昌,万文辉,赵红颖,等.视觉SLAM技术的进展与应用[J].测绘学报,2018,47(6):770-779. Di K C, Wan W H, Zhao H Y, et al. Progress and applications of visual SLAM[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6):770-779. [7] Yousif K, Bab-Hadiashar A, Hoseinnezhad R. An overview to visual odometry and visual SLAM:Applications to mobile robotics[J]. Intelligent Industrial Systems, 2015, 1(4):289-311. [8] 李月华,朱世强,于亦奇.工厂环境下改进的视觉SLAM算法[J].机器人,2019,41(1):95-103.Li Y H, Zhu S Q, Yu Y Q. Improved visual SLAM algorithm in factory environment[J]. Robot, 2019, 41(1):95-103. [9] Mur-Artal R, Tardós J D. ORB-SLAM2:An open-source SLAM system for monocular, stereo, and RGB-D cameras[J]. IEEE Transactions on Robotics, 2017, 33(5):1255-1262. [10] Engel J, Schöps T, Cremers D. LSD-SLAM:Large-scale direct monocular SLAM[C]//European Conference on Computer Vision. Cham, Switzerland:Springer, 2014:834-849. [11] Engel J, Koltun V, Cremers D. Direct sparse odometry[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(3):611-625. [12] 魏彤,金砺耀.基于双目ORB-SLAM的障碍物记忆定位与去噪算法[J].机器人,2018,40(3):266-272. Wei T, Jin L Y. Obstacle memory localization and denoising algorithm based on binocular ORB-SLAM[J]. Robot, 2018, 40(3):266-272. [13] 魏彤,李新.惯导卫星组合导航辅助的视觉导盲仪定位建图[J].自动化仪表,2019,40(1):45-49. Wei T, Li X. Localization and mapping of visual travel aids assisted by IMU/GPS integrated navigation.[J]. Process Automation Instrumentation, 2019, 40(1):45-49. [14] Cadena C, Carlone L, Carrillo H, et al. Past, present, and future of simultaneous localization and mapping:Toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32(6):1309-1332. [15] Saputra M R U, Markham A, Trigoni N. Visual SLAM and structure from motion in dynamic environments[J]. ACM Computing Surveys, 2018, 51(2):1-36. [16] Chavez-Garcia R, Aycard O. Multiple sensor fusion and classification for moving object detection and tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(2):525-534. [17] Lenac K, Maurovic I, Petrovic I. Moving objects detection using a thermal camera and IMU on a vehicle[C]//International Conference on Electrical Drives and Power Electronics (EDPE). Piscataway, USA:IEEE, 2015:212-219. [18] Bescos B, Fácil J M, Civera J, et al. DynaSLAM:Tracking, mapping, and inpainting in dynamic scenes[J]. IEEE Robotics and Automation Letters, 2018, 3(4):4076-4083. [19] Yu C, Liu Z X, Liu X J, et al. DS-SLAM:A semantic visual SLAM towards dynamic environments[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2018:1168-1174. [20] Zhou D F, Fremont V, Quost B, et al. On modeling ego-motion uncertainty for moving object detection from a mobile platform[C]//IEEE Intelligent Vehicles Symposium. Piscataway, USA:IEEE, 2014:1332-1338. [21] Li X Z, Xu C L. Moving object detection in dynamic scenes based on optical flow and superpixels[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2015:84-89. [22] 高成强,张云洲,王晓哲,等.面向室内动态环境的半直接法RGB-D SLAM算法[J].机器人,2019,41(3):372-383. Gao C Q, Zhang Y Z, Wang X Z, et al. Semi-direct RGB-D SLAM algorithm for dynamic indoor environments[J]. Robot, 2019, 41(3):372-383. [23] 张慧娟,方灶军,杨桂林.动态环境下基于线特征的RGB-D视觉里程计[J].机器人,2019,41(1):75-82. Zhang H J, Fang Z J, Yang G L. RGB-D visual odometry in dynamic environments using line features[J]. Robot, 2019, 41(1):75-82. [24] Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282. [25] Yamaguchi K, Mcallester D, Urtasun R. Efficient joint segmentation, occlusion labeling, stereo and flow estimation[C]//European Conference on Computer Vision. Cham, Switzerland:Springer, 2014:756-771. [26] Urtasun R, Lenz P, Geiger A. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA:IEEE, 2012:3354-3361.