Development of Soft Lower Extremity Exoskeleton and Its Key Technologies: A Survey
ZHAO Xingang1,2, TAN Xiaowei1,2,3, ZHANG Bi1,2
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Firstly, the application requirements of lower extremity exoskeletons in rehabilitation, industry as well as military fields are introduced briefly, and the pros and cons, research problems and applicable population of rigid and soft lower extremity exoskeletons (RLEEX/SLEEX) are analyzed and compared. Subsequently, the research process and progress of SLEEX at home and abroad are illustrated in great detail, especially in mechanisms and actuation, sensors layout, development of control strategies as well as assessment of the assistance performance. Finally, the key technologies related to the SLEEX, including soft structure, human intention recognition, control strategies and assistance assessment, are summarized, and the future research direction is prospected.
[1] Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat. 2019 Revision of World Population Prospects[DB/OL].[2019-07-27]. https://population.un.org/wpp/. [2] 第二次全国残疾人抽样调查领导小组.2006年第二次全国残疾人抽样调查主要数据公报[DB/OL].(2006-12-01)[2019-07-27]. http://www.cdpf.org.cn/special/dlzt/cydc/sjfb-1.htm. The 2nd National Survey Group for the Disabled. Bulletin of the main data of the 2nd national disability sampling survey in 2006[DB/OL]. (2006-12-01)[2019-07-27]. http://www.cdpf.org.cn/special/dlzt/cydc/sjfb-1.htm. [3] Zhou M G, Wang H D, Zeng X Y, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017:A systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2019, 394(10204):1145-1158. [4] 王陇德,刘建民,杨弋,等.我国脑卒中防治仍面临巨大挑战——《中国脑卒中防治报告2018》概要[J].中国循环杂志,2019,34(2):105-119. Wang L D, Liu J M, Yang Y, et al. The prevention and treatment of stroke still face huge challenges-Brief report on stroke prevention and treatment in China, 2018[J]. Chinese Circulation Journal, 2019, 34(2):105-119. [5] Schiele A. Ergonomics of exoskeletons:Objective performance metrics[C]//3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Piscataway, USA:IEEE, 2009:103-108. [6] 中国残疾人联合会.2018年残疾人事业发展统计公报[DB/OL]. (2019-03-25)[2019-07-27]. http://www.cdpf.org.cn/zcwj/zxwj/201903/t20190327_649544.shtml. China Disabled Person's Federation. Statistical bulletin on the development of disabled persons in 2018[DB/OL]. (2019-03-25)[2019-07-27]. http://www.cdpf.org.cn/zcwj/zxwj/201903/t20190327_649544.shtml. [7] Asbeck A T, Rossi S M M D, Galiana I, et al. Stronger, smarter, softer:Next-generation wearable robots[J]. IEEE Robotics & Automation Magazine, 2014, 21(4):22-33. [8] Asbeck A T, Dyer R J, Larusson A F, et al. Biologically-inspired soft exosuit[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2013. DOI:10.1109/ICORR.2013.6650455. [9] Asbeck A T, de Rossi S M M, Holt K G, et al. A biologically inspired soft exosuit for walking assistance[J]. International Journal of Robotics Research, 2015, 34(6):744-762. [10] Lee S, Crea S, Malcolm P, et al. Controlling negative and positive power at the ankle with a soft exosuit[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2016:3509-3515. [11] Malcolm P, Lee S, Crea S, et al. Varying negative work assistance at the ankle with a soft exosuit during loaded walking[J]. Journal of NeuroEngineering and Rehabilitation, 2017, 14. DOI:10.1186/s12984-017-0267-5. [12] Quinlivan B T, Lee S, Malcolm P, et al. Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit[J]. Science Robotics, 2017, 2(2). DOI:10.1126/scirobotics.aah4416. [13] Ding Y, Galiana I, Asbeck A T, et al. Multi-joint actuation platform for lower extremity soft exosuits[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2014:1327-1334. [14] Asbeck A T, Schmidt K, Galiana I, et al. Multi-joint soft exosuit for gait assistance[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:6197-6204. [15] Panizzolo F A, Galiana I, Asbeck A T, et al. A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking[J]. Journal of NeuroEngineering and Rehabilitation, 2016, 13. DOI:10.1186/s12984-016-0150-9. [16] Ding Y, Galiana I, Asbeck A T, et al. Biomechanical and physiological evaluation of multi-joint assistance with soft exosuits[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(2):119-130. [17] Lee S, Karavas N, Quinlivan B T, et al. Autonomous multi-joint soft exosuit for assistance with walking overground[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2018:2812-2819. [18] Bae J, de Rossi S M M, O'Donnell K, et al. A soft exosuit for patients with stroke:Feasibility study with a mobile off-board actuation unit[C]//IEEE/RAS-EMBS International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2015:131-138. [19] Awad L N, Bae J, O'Donnell K, et al. A soft robotic exosuit improves walking in patients after stroke[J]. Science Translational Medicine, 2017, 9(400). DOI:10.1126/scitranslmed.aai9084. [20] Bae J, Siviy C, Rouleau M, et al. A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2018:2820-2827. [21] Bae J, Awad L N, Long A, et al. Biomechanical mechanisms underlying exosuit-induced improvements in walking economy after stroke[J]. Journal of Experimental Biology, 2018, 221(5). DOI:10.1242/jeb.168815. [22] Ding Y, Galiana I, Siviy C, et al. IMU-based iterative control for hip extension assistance with a soft exosuit[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2016:3501-3508. [23] Lee G, Ye D, Bujanda I, et al. Improved assistive profile tracking of soft exosuits for walking and jogging with off-board actuation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2017:1699-1706. [24] Zhang J, Fiers P, Witte K A, et al. Human-in-the-loop optimization of exoskeleton assistance during walking[J]. Science, 2017, 356(6344):1280-1283. [25] Koller J R, Gates D H, Ferris D P, et al. ‘Body-in-the-loop’ optimization of assistive robotic devices:A validation study[C]//Robotics:Science and Systems. Cambridge, USA:MIT Press, 2016. DOI:10.15607/RSS.2016.XII.007. [26] Ding Y, Kim M, Kuindersma S, et al. Human-in-the-loop optimization of hip assistance with a soft exosuit during walking[J]. Science Robotics, 2018, 3(15). DOI:10.1126/scirobotics. aar5438. [27] Kim M, Liu C, Kim J, et al. Bayesian optimization of soft exosuits using a metabolic estimator stopping process[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2019:9173-9179. [28] Collins S H, Wiggin M B, Sawicki G S. Reducing the energy cost of human walking using an unpowered exoskeleton[J]. Nature, 2015, 522(7555):212. [29] Jackson R W, Collins S H. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons[J]. Journal of Applied Physiology, 2015, 119(5):541-557. [30] Witte K A, Zhang J, Jackson R W, et al. Design of two lightweight, high-bandwidth torque-controlled ankle exoskeletons[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:1223-1228. [31] Witte K A, Fatschel A M, Collins S H. Design of a lightweight, tethered, torque-controlled knee exoskeleton[C]//International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2017:1646-1653. [32] Jin X, Cui X, Agrawal S K. Design of a cable-driven active leg exoskeleton (C-ALEX) and gait training experiments with human subjects[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:5578-5583. [33] Jin X, Prado A, Agrawal S K. Retraining of human gait-Are lightweight cable-driven leg exoskeleton designs effective?[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(4):847-855. [34] Hidayah R, Jin X, Chamarthy S, et al. Comparing the performance of a cable-driven active leg exoskeleton (C-ALEX) over-ground and on a treadmill[C]//7th IEEE International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA:IEEE, 2018. DOI:10.1109/BIOROB.2018.8487771. [35] Mooney L M, Rouse E J, Herr H M. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage[J]. Journal of NeuroEngineering and Rehabilitation, 2014, 11. DOI:10.1186/1743-0003-11-80. [36] Mooney L M, Herr H. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton[J]. Journal of NeuroEngineering and Rehabilitation, 2016, 13. DOI:10.1186/s12984-016-0111-3. [37] Gasparri G M, Bair M O, Libby R P, et al. Verification of a robotic ankle exoskeleton control scheme for gait assistance in individuals with cerebral palsy[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2018:4673-4678. [38] Lerner Z F, Gasparri G M, Bair M O, et al. An untethered ankle exoskeleton improves walking economy in a pilot study of individuals with cerebral palsy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(10):1985-1993. [39] Gasparri G M, Luque J, Lerner Z F. Proportional joint-moment control for instantaneously adaptive ankle exoskeleton assistance[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(4):751-759. [40] Bartenbach V, Schmidt K, Naef M, et al. Concept of a soft exosuit for the support of leg function in rehabilitation[C]//IEEE/RAS-EMBS International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2015:125-130. [41] Schmidt K, Riener R. MAXX:Mobility assisting textile exoskeleton that exploits neural control synergies[C]//Converging Clinical and Engineering Research on Neurorehabilitation II. Berlin, Germany:Springer, 2017:539-543. [42] Schmidt K, Duarte J E, Grimmer M, et al. The Myosuit:Bi-articular anti-gravity exosuit that reduces hip extensor activity in sitting transfers[J]. Frontiers in Neurorobotics, 2017, 11. DOI:10.3389/fnbot.2017.00057. [43] ReWalk Robotics, Inc. ReStore soft exo-suit-A revolution in post-stroke gait training[DB/OL].[2019-07-27]. https://rewalk.com/restore-exo-suit/. [44] Park J, Park H, Kim J. Performance estimation of the lower limb exoskeleton for plantarflexion using surface electromyography (sEMG) signals[J]. Journal of Biomechanical Science and Engineering, 2017, 12(2). DOI:10.1299/jbse.16-00595. [45] Defence Science and Technology Group, Department of Defence, Australian Government. Operational exoskeleton (OX)[DB/OL].[2019-07-27]. https://www.dst.defence.gov.au/opportunity/operational-exoskeleton-ox. [46] European Union's Horizon 2020 framework programme. Xo-Soft-Soft modular biomimetic exoskeleton to assist people with mobility impairments[DB/OL].[2019-07-27]. https://www.xosoft.eu/. [47] di Natali C, Poliero T, Sposito M, et al. Design and evaluation of a soft assistive lower limb exoskeleton[J]. Robotica, 2019. DOI:10.1017/S0263574719000067. [48] Wehner M, Park Y-L, Walsh C, et al. Experimental characterization of components for active soft orthotics[C]//4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics. Piscataway, USA:IEEE, 2012:1586-1592. [49] Wehner M, Quinlivan B, Aubin P M, et al. A lightweight soft exosuit for gait assistance[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:3362-3369. [50] Park Y-L, Chen B-R, Young D, et al. Bio-inspired active soft orthotic device for ankle foot pathologies[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2011:4488-4495. [51] Park Y-L, Chen B-R, Perez-Arancibia N O, et al. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation[J]. Bioinspiration & Biomimetics, 2014, 9(1). DOI:10.1088/1748-3182/9/1/016007. [52] Kerestes J. Robotic augmentation of human locomotion for high speed running[D]. Pheonix, USA:Arizona State University, 2014. [53] Beyl P, van Damme M, van Ham R, et al. Pleated pneumatic artificial muscle-based actuator system as a torque source for compliant lower limb exoskeletons[J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3):1046-1056. [54] Malcolm P, Derave W, Galle S, et al. A simple exoskeleton that assists plantarflexion can reduce the metabolic cost of human walking[J]. PLOS ONE, 2013, 8(2). DOI:10.1371/journal. pone.0056137. [55] Galle S, Derave W, Bossuyt F, et al. Exoskeleton plantarflexion assistance for elderly[J]. Gait & Posture, 2017, 52:183-188. [56] Galle S, Malcolm P, Collins S H, et al. Reducing the metabolic cost of walking with an ankle exoskeleton:Interaction between actuation timing and power[J]. Journal of NeuroEngineering and Rehabilitation, 2017, 14. DOI:10.1186/s12984-017-0235-0. [57] Antonellis P, Galle S, de Clercq D, et al. Altering gait variability with an ankle exoskeleton[J]. PLOS ONE, 2018, 13(10). DOI:10.1371/journal.pone.0205088. [58] Malcolm P, Galle S, Derave W, et al. Bi-articular knee-ankle-foot exoskeleton produces higher metabolic cost reduction than weight-matched mono-articular exoskeleton[J]. Frontiers in Neuroscience, 2018, 12. DOI:10.3389/fnins.2018.00069. [59] Malcolm P, Galle S, van den Berghe P, et al. Exoskeleton assistance symmetry matters:Unilateral assistance reduces metabolic cost, but relatively less than bilateral assistance[J]. Journal of NeuroEngineering and Rehabilitation, 2018, 15. DOI:10.1186/s12984-018-0381-z. [60] Takahashi K Z, Lewek M D, Sawicki G S. A neuromechanics-based powered ankle exoskeleton to assist walking post-stroke:A feasibility study[J]. Journal of NeuroEngineering and Rehabilitation, 2015, 12. DOI:10.1186/s12984-015-0015-7. [61] Mercante S, Cersósimo E, Letelier C, et al. Effects of the use of functional electro-stimulation (FES) on the physiological cost, speed and capacity of gait after stroke[C]//3rd International Conference on NeuroRehabilitation. Berlin, German:Springer, 2017:1457-1461. [62] Coste C A, Sijobert B, Froger J. FES-drop-foot correction:From pre-programmed patterns to online modulation[C]//Con-verging Clinical and Engineering Research on Neurorehabilitation II. Berlin, Germany:Springer International Publishing, 2017:971-974. [63] Kirsch N A, Bao X, Alibeji N A, et al. Model-based dynamic control allocation in a hybrid neuroprosthesis[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(1):224-232. [64] Li M, Meng W, Hu J W, et al. Adaptive sliding mode control of functional electrical stimulation (FES) for tracking knee joint movement[C]//10th International Symposium on Computational Intelligence and Design. Piscataway, USA:IEEE, 2017:346-349. [65] Svensson W, Holmberg U. Ankle-foot-orthosis control in inclinations and stairs[C]//IEEE Conference on Robotics, Automation and Mechatronics. Piscataway, USA:IEEE, 2008:856-861. [66] Murray S A, Farris R J, Golfarb M, et al. FES coupled with a powered exoskeleton for cooperative muscle contribution in persons with paraplegia[C]//40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2018:2788-2792. [67] Pittaccio S, Viscuso S. An EMG-controlled SMA device for the rehabilitation of the ankle joint in post-acute stroke[J]. Journal of Materials Engineering and Performance, 2011, 20(4-5):666-670. [68] Pittaccio S, Viscuso S. Shape memory actuators for medical rehabilitation and neuroscience[M]//Smart Actuation and Sensing Systems-Recent Advances and Future Challenges. London, UK:IntechOpen Limited, 2012. DOI:10.5772/50201. [69] Pittaccio S, Viscuso S, Garavaglia L. Devices for rehabilitation applications[M]//Advances in Science and Technology, Vol.78. Zurich, Switzerland:Trans Tech Publications Ltd, 2012:103-112. [70] Phu D X, Long M B Q, Kang B H, et al., Design of a new magneto-rheological damper featuring a hybrid type of piston for lower limb exoskeleton[C]//Proceedings of SPIE, Vol.10970. Bellingham, USA:SPIE, 2019. DOI:10.1117/12. 2512737. [71] Nikitczuk J, Weinberg B, Canavan P K, et al. Active knee rehabilitation orthotic device with variable damping characteristics implemented via an electrorheological fluid[J]. IEEE/ASME Transactions on Mechatronics, 2010, 15(6):952-960. [72] 牛彬.可穿戴式的下肢步行外骨骼控制机理研究与实现[D].杭州:浙江大学,2006. Niu B. Research and implementation of the control mechanism of a wearable exoskeleton leg for human's walking power augmentation[D]. Hangzhou:Zhejiang University, 2006. [73] 孙建,余永,葛运建,等.可穿戴型下肢助力机器人感知系统研究[J].微纳电子技术,2007(Z1):353-357. Sun J, Yu Y, Ge Y J, et al. Research on sensing systems of wearable power assist leg[J]. Micronanoelectronic Technology, 2007(Z1):353-357. [74] Tran H T, Cheng H, Duong M K, et al. Fuzzy-based impedance regulation for control of the coupled human-exoskeleton system[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2014:986-992. [75] 刘洋.基于绳-滑轮机构的欠驱动下肢外骨骼研究[D].哈尔滨:哈尔滨工业大学,2018. Liu Y. Research on the cable-pulley underactuated lower limb exoskeleton[D]. Harbin:Harbin Institute of Technology, 2018. [76] Shan H, Jiang C, Mao Y L, et al. Design and control of a wearable active knee orthosis for walking assistance[C]//14th IEEE International Workshop on Advanced Motion Control. Piscataway, USA:IEEE, 2016:51-56. [77] Zhang Q, Shen X P, Wang X S, et al. Development of a small clamper for tendon-sheath artificial muscle[C]//25th International Conference on Mechatronics and Machine Vision in Practice. Piscataway, USA:IEEE, 2018:91-96. [78] 陈春杰.基于柔性传动的助力全身外骨骼机器人系统研究[D].深圳:中国科学院深圳先进技术研究院,2017. Chen C J. Research on power-assisted full-body exoskeleton robotic system based on flexible drive[D]. Shenzhen:Shenzhen Institutes of Advanced Technology, CAS, 2017. [79] Chen C J, Wu X Y, Liu D-X, et al. Design and voluntary motion intention estimation of a novel wearable full-body flexible exoskeleton robot[J]. Mobile Information Systems, 2017. DOI:10.1155/2017/8682168. [80] 隋立明,谭世江,王岚,等.气动肌肉驱动助力机械腿的机构动力学分析[J].机床与液压,2008(8):86-88. Sui L M, Tan S J, Wang L, et al. Dynamic analysis of an assistant mechanical leg actuated by pneumatic muscles[J] Machine Tool & Hydraulics, 2008(8):86-88. [81] 隋立明,张立勋.气动肌肉驱动步态康复训练外骨骼装置的研究[J].哈尔滨工程大学学报,2011,32(9):1244-1248. Sui L M, Zhang L X. Development of an actuated exoskeleton with pneumatic muscles for gait rehabilitation training[J] Journal of Harbin Engineering University, 2011, 32(9):1244-1248. [82] 万诗龙.可穿戴下肢柔性外骨骼助力系统设计[D].南京:东南大学,2017. Wan S L. Design of the power system of wearable and flexible lower-limb exoskeleton[D]. Nanjing:Southeast University, 2017. [83] 何崇伟.人工肌肉驱动的下肢康复外骨骼的研究[D].南京:东南大学,2018. He C W. Research on lower limb rehabilitation exoskeleton driven by artificial muscle[D]. Nanjing:Southeast University, 2018. [84] 李超.气动肌肉驱动的外骨骼助力系统研究[D].杭州:浙江大学,2016. Li C. Research on the power assistive exoskeleton system driven by pneumatic muscles[D]. Hangzhou:Zhejiang University, 2016. [85] 周心慰.气动肌肉驱动的下肢康复外骨骼系统研究[D].杭州:浙江大学,2018. Zhou X W. Research on the lower extremity rehabilitation exoskeleton system driven by pneumatic muscles[D]. Hangzhou:Zhejiang University, 2018. [86] Tu X K, Huang J, He J P. Leg hybrid rehabilitation based on hip-knee exoskeleton and ankle motion induced by FES[C]//Inter-national Conference on Advanced Robotics and Mechatronics. Piscataway, USA:IEEE, 2016:237-242. [87] 涂细凯.基于气动肌肉外骨骼和功能性电刺激的肢体康复技术研究[D].武汉:华中科技大学,2016. Tu X K. The research of limb rehabilitation technology based on pneumatic muscle-exoskeleton and functional electrical stimulation[D]. Wuhan:Huazhong University of Science and Technology, 2016. [88] Cao Y, Huang J, Huang Z B, et al. Dynamic model of exoskeleton based on pneumatic muscle actuators and experiment verification[C]//18th IEEE-RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2018:334-339. [89] Yandell M B, Quinlivan B T, Popov D, et al. Physical interface dynamics alter how robotic exosuits augment human movement:Implications for optimizing wearable assistive devices[J]. Journal of NeuroEngineering and Rehabilitation, 2017, 14. DOI:10.1186/s12984-017-0247-9. [90] del Carmen Sanchez-Villamañan M, Gonzalez-Vargas J, Torricelli D, et al. Compliant lower limb exoskeletons:A comprehensive review on mechanical design principles[J]. Journal of NeuroEngineering and Rehabilitation, 2019, 16. DOI:10.1186/s12984-019-0517-9. [91] Grimmer M, Quinlivan B T, Lee S, et al. Comparison of the human-exosuit interaction using ankle moment and ankle positive power inspired walking assistance[J]. Journal of Biomechanics, 2019, 83:76-84. [92] Vanderborght B, Albu-Schaeffer A, Bicchi A, et al. Variable impedance actuators:A review[J]. Robotics and Autonomous Systems, 2013, 61(12):1601-1614. [93] Capaday C. Bioinspired legged locomotion:Models, concepts, control and applications[M]. Oxford, UK:Butterworth-Heinemann, 2018:347-400. [94] Hollerbach J M, Hunter I W, Ballantyne J. A comparative analysis of actuator technologies for robotics[M]//The Robotics Review 2. Cambridge, USA:MIT Press, 1992:299-342. [95] Li Y D, Hsiao-Wecksler E T. Gait mode recognition and control for a portable-powered ankle-foot orthosis[C]//IEEE 13th International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2013. DOI:10.1109/ICORR.2013.6650373. [96] Huo W, Mohammed S, Amirat Y, et al. Fast gait mode detection and assistive torque control of an exoskeletal robotic orthosis for walking assistance[J]. IEEE Transactions on Robotics, 2018, 34(4):1035-1052. [97] Bartlett H L, Goldfarb M. A phase variable approach for IMU-based locomotion activity recognition[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(6):1330-1338. [98] Ahmadi M, O'Neil M, Fragala-Pinkham M, et al. Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy[J]. Journal of NeuroEngineering and Rehabilitation, 2018, 15. DOI:10.1186/s12984-018-0456-x. [99] Ledoux E D. Inertial sensing for gait event detection and transfemoral prosthesis control strategy[J]. IEEE Transactions on Biomedical Engineering, 2018, 65(12):2704-2712. [100] Schuy J, Mielke T, Steinhausen M, et al. Design & evaluation of a sensor minimal gait phase and situation detection algorithm of human walking[C]//15th IEEE-RAS International Conference on Humanoid Robots. Piscataway, USA:IEEE, 2015:20-25. [101] Zhou Z H, Liu X H, Jiang Y R, et al. Real-time onboard SVM-based human locomotion recognition for a bionic knee exoskeleton on different terrains[C]//Wearable Robotics Association Conference. Piscataway, USA:IEEE, 2019:34-39. [102] Rivera D, Cruz-Piris L, Fernandez S, et al. A novel method for automatic detection and classification of movement patterns in short duration playing activities[J]. IEEE Access, 2018, 6:53409-53425. [103] Dutta A, Ma O, Toledo M, et al. Identifying free-living physical activities using lab-based models with wearable accelerometers[J]. Sensors, 2018, 18(11). DOI:10.3390/s18113893. [104] Edelman B J, Meng J, Suma D, et al. Noninvasive neuroimaging enhances continuous neural tracking for robotic device control[J]. Science Robotics, 2019, 4(31). DOI:10.1126/scirobotics.aaw6844. [105] Gui K, Liu H H, Zhang D G. Towards multimodal human-robot interaction to enhance active participation of users in gait rehabilitation[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(11):2054-2066. [106] Brunner C, Birbaumer N, Blankertz B, et al. BNCI Horizon 2020:Towards a roadmap for the BCI community[J]. Brain-Computer Interfaces, 2015, 2(1):1-10. [107] Sankai Y, Sakurai T. Exoskeletal cyborg-type robot[J]. Science Robotics, 2018, 3(17). DOI:10.1126/scirobotics.aat3912. [108] Tagliamonte N L, Valentini S, Sudano A, et al. Switching assistance for exoskeletons during cyclic motions[J]. Frontiers in Neurorobotics, 2019, 13. DOI:10.3389/fnbot.2019.00041. [109] Hsu H, Kang I, Young A J. Design and evaluation of a proportional myoelectric controller for hip exoskeletons during walking[C]//ASME 11th Annual Dynamic Systems and Control Conference. New York, USA:ASME, 2018. DOI:10.1115/DSCC2018-9226. [110] Weir R E F, Troyk P R, DeMichele G A, et al. Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording[J]. IEEE Transactions on Biomedical Engineering, 2009, 56(1):159-171. [111] Ansari A, Atkeson C G, Choset H, et al. A survey of current exoskeletons and their control architectures and algorithms (Draft 4.0)[R]. Pittsburgh, USA:Carnegie Mellon University, 2015. [112] Deng W, Papavasileiou I, Qiao Z, et al. Advances in automation technologies for lower-extremity neurorehabilitation:A review and future challenges[J]. IEEE Reviews in Biomedical Engineering, 2018, 11:289-305. [113] Tucker M R, Olivier J, Pagel A, et al. Control strategies for active lower extremity prosthetics and orthotics:A review[J]. Journal of NeuroEngineering and Rehabilitation, 2015, 12. DOI:10.1186/1743-0003-12-1. [114] Zhang J, Cheah C C, Collins S H. Experimental comparison of torque control methods on an ankle exoskeleton during human walking[C]//2015 IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:5584-5589. [115] Realmuto J, Klute G, Devasia S. Preliminary investigation of symmetry learning control for powered ankle-foot prostheses[C]//Wearable Robotics Association Conference. Piscataway, USA:IEEE, 2019:40-45. [116] Altinkaynak E S, Braun D J. A phase-invariant linear torque-angle-velocity relation hidden in human walking data[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(4):702-711. [117] Thatte N, Shah T, Geyer H. Robust and adaptive lower limb prosthesis stance control via extended Kalman filter-based gait phase estimation[J]. IEEE Robotics and Automation Letters, 2019, 4(4):3129-3136. [118] Quintero D, Villarreal D J, Lambert D J, et al. Continuous-phase control of a powered knee-ankle prosthesis:Amputee experiments across speeds and inclines[J]. IEEE Transactions on Robotics, 2018, 34(3):686-701. [119] Quintero D, Villarreal D J, Gregg R D. Preliminary experiments with a unified controller for a powered knee-ankle prosthetic leg across walking speeds[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2016:5427-5433. [120] Villarreal D J, Gregg R D. Unified phase variables of relative degree two for human locomotion[C]//38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2016:6262-6267. [121] Villarreal D J, Gregg R D. A survey of phase variable candidates of human locomotion[C]//36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Piscataway, USA:IEEE, 2014:4017-4021. [122] Chinimilli P T, Subramanian S C, Redkar S, et al. Human locomotion assistance using two-dimensional features based adaptive oscillator[C]//Wearable Robotics Association Conference. Piscataway, USA:IEEE, 2019:92-98. [123] Zheng E, Manca S, Yan T, et al. Gait phase estimation based on noncontact capacitive sensing and adaptive oscillators[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(10):2419-2430. [124] Yan T, Parri A, Garate V R, et al. An oscillator-based smooth real-time estimate of gait phase for wearable robotics[J]. Autonomous Robots, 2017, 41(3):759-774. [125] de la Fuente J, Sugar T G, Redkar S. Nonlinear, phase-based oscillator to generate and assist periodic motions[J]. Journal of Mechanisms and Robotics, 2016, 9(2). DOI:10.1115/1. 4036023. [126] Seo K, Hyung S Y, Choi B K, et al. A new adaptive frequency oscillator for gait assistance[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:5565-5571. [127] Fluit R, Prinsen E, Wang S, et al. A comparison of control strategies in commercial and research knee prostheses[J]. IEEE Transactions on Biomedical Engineering, 2019, 67(1):277-290. [128] Bristow D A, Tharayil M, Alleyne A G. A survey of iterative learning control[J]. IEEE Control Systems Magazine, 2006, 26(3):96-114. [129] Gregg R D, Rouse E J, Hargrove L J, et al. Evidence for a time-invariant phase variable in human ankle control[J]. PLOS ONE, 2014, 9(2). DOI:10.1371/journal.pone.0089163. [130] Villarreal D J, Poonawala H A, Gregg R D. A robust parameterization of human gait patterns across phase-shifting perturbations[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(3):265-278. [131] Ronsse R, Lenzi T, Vitiello N, et al. Oscillator-based assistance of cyclical movements:Model-based and model-free approaches[J]. Medical & Biological Engineering & Computing, 2011, 49(10):1173-1185. [132] Hsiao H Y, Knarr B A, Higginson J S, et al. The relative contribution of ankle moment and trailing limb angle to propulsive force during gait[J]. Human Movement Science, 2015, 39:212-221. [133] Dadashi F, Mariani B, Rochat S, et al. Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults[J]. Sensors, 2014, 14(1):443-457. [134] Guzik A, Druzbicki M, Przysada G, et al. Validity of the gait variability index for individuals after a stroke in a chronic stage of recovery[J]. Gait & Posture, 2019, 68:63-67. [135] Kwon J, Park J H, Ku S, et al. A soft wearable robotic ankle-foot-orthosis for post-stroke patients[J]. IEEE Robotics and Automation Letters, 2019, 4(3):2547-2552. [136] Viteckova S, Kutilek P, Svoboda Z, et al. Gait symmetry measures:A review of current and prospective methods[J]. Biomedical Signal Processing and Control, 2018, 42:89-100. [137] Allen J L, Kautz S A, Neptune R R. Forward propulsion asymmetry is indicative of changes in plantarflexor coordination during walking in individuals with post-stroke hemiparesis[J]. Clinical Biomechanics, 2014, 29(7):780-786. [138] Roelker S A, Bowden M G, Kautz S A, et al. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke:A review[J]. Gait & Posture, 2019, 68:6-14. [139] Lewek M D, Sawicki G S. Trailing limb angle is a surrogate for propulsive limb forces during walking post-stroke[J]. Clinical Biomechanics, 2019, 67:115-118. [140] Li T P, Chen J S, Hu C H, et al. Automatic timed up-and-go sub-task segmentation for Parkinson's disease patients using video-based activity classification[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2018, 26(11):2189-2199. [141] Bhat S, Acharya U R, Hagiwara Y, et al. Parkinson's disease:Cause factors, measurable indicators, and early diagnosis[J]. Computers in Biology and Medicine, 2018, 102:234-241. [142] Ambrus M, Sanchez J A, Fernández-Del-Olmo M, et al. Test-retest reliability of stride length-cadence gait relationship in Parkinson's disease[J]. Gait & Posture, 2019, 71:177-180. [143] Torvi V G, Bhattacharya A, Chakraborty S. Deep domain adaptation to predict freezing of gait in patients with Parkinson's disease[C]//17th IEEE International Conference on Machine Learning and Applications. Piscataway, USA:IEEE, 2018:1001-1006. [144] Lee S-H, Lim J S. Parkinson's disease classification using gait characteristics and wavelet-based feature extraction[J]. Expert Systems with Applications, 2012, 39(8):7338-7344. [145] Vienne A, Barrois R P, Buffat S, et al. Inertial sensors to assess gait quality in patients with neurological disorders:A systematic review of technical and analytical challenges[J]. Frontiers in Psychology, 2017, 8. DOI:10.3389/fpsyg.2017.00817.