Bearing-only Target Pursuing Strategy for AUV Based on Short-term Planning
LIN Changlong1,2,3, LIU Kaizhou2,3, LI Yiping2,3, ZHANG Yiwen1, CHEN Yan1
1. College of Computer Science and Technology, Huaqiao University, Xiamen 361021, China; 2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 3. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
Abstract:The problem of pursuing large marine mammals by autonomous underwater vehicles (AUVs) is studied. Because the maneuverability of the target is much better than that of the tracker, the AUV may miss the opportunity of approaching the target if it plans the pursuing path after the convergence of the target motion estimation value. Inspired by the idea of game theory, a target pursuing algorithm based on short-term planning is proposed to solve this problem. In this method, all feasible behaviors of AUV in a short period are firstly constructed, then the situation that the AUV will reach under each behavior is evaluated, and finally the behavior that makes AUV in the most advantageous pursuing situation is chosen as the result of planning. In order to examine this method, two simulation experiments are carried out: the first experiment shows that the pursuing success rate of the proposed method is 5.2% higher than that of the traditional method, and the second experiment shows that the AUV can still effectively pursue the target even under large measurement errors. The simulation results show that this method not only improves the success rate of pursuing but also has good robustness.
[1] 陈华雷,刘开周.估计从UUV航行参数的混合坐标系下的EKF算法[J].机器人,2009,31(S1):6-9. Chen H L, Liu K Z. Slave UUV motion analysis using mixed coordinates EKF[J]. Robot, 2009, 31(S1):6-9. [2] Li X H, Li Y A, Liu W S, et al. Dual-array tracking algorithm for underwater bearing-only target tracking based on EKF[M]//Lecture Notes in Electrical Engineering, Vol 237. Berlin, Germany:Springer, 2014:201-209. [3] 吴盘龙,孔建寿.基于平方根UKF的水下纯方位目标跟踪[J].南京理工大学学报(自然科学版),2009,33(6):751-755. Wu P L, Kong J S. Underwater bearing-only target tracking based on square-root UKF[J]. Journal of Nanjing University of Science and Technology (Natural Science), 2009, 33(6):751-755. [4] Yu J Y, Coates M J, Rabbat M G, et al. A distributed particle filter for bearings-only tracking on spherical surfaces[J]. IEEE Signal Processing Letters, 2016, 23(3):326-330. [5] 石章松,刘忠.单站纯方位目标多模型卡尔曼滤波跟踪算法的研究[J].系统仿真学报,2006,18(7):1802-1805. Shi Z S, Liu Z. Study on single platform bearing-only target tracking algorithm of multiple model Kalman filters[J]. Journal of System Simulation, 2006, 18(7):1802-1805. [6] 刘健,玄兆林,刘忠.纯方位被动目标运动分析的修正增益卡尔曼滤波算法研究[J].电光与控制,2006,13(1):5-7. Liu J, Xuan Z L, Liu Z. Algorithm of MGEKF used for bearing-only passive target motion analysis[J]. Electronics Optics and Control, 2006, 13(1):5-7. [7] 张勇刚,黄玉龙,武哲民,等.一种高阶无迹卡尔曼滤波方法[J].自动化学报,2014,40(5):838-848. Zhang Y G, Huang Y L, Wu Z M, et al. A high order unscented Kalman filtering method[J]. Acta Automatica Sinica, 2014, 40(5):838-848. [8] Chang D C, Fang M W. Bearing-only maneuvering mobile tracking with nonlinear filtering algorithms in wireless sensor networks[J]. IEEE Systems Journal, 2017, 8(1):160-170. [9] Hammel S E, Liu P T, Hilliard E J, et al. Optimal observer motion for localization with bearing measurements[J]. Computers & Mathematics with Applications, 1989, 18(1):171-180. [10] Passerieux J M, Cappel D V. Optimal observer maneuver for bearings-only tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 34(3):777-788. [11] Oshman Y, Davidson P. Optimization of observer trajectories for bearings-only target localization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 35(3):892-902. [12] Zhang H L, Dufour F, Anselmi J, et al. Piecewise optimal trajectories of observer for bearings-only tracking by quantization[C]//20th International Conference on Information Fusion. Piscataway, USA:IEEE, 2017:1458-1464. [13] 戴中华,邓新蒲.基于方位角变化率最大的轨迹优化几何方法[J].航天电子对抗,2007,23(4):47-49. Dai Z H, Deng X P. A geometrical method for optimization of trajectory based on maximizing azimuth changing rate[J]. Aerospace Electronic Warfare, 2007, 23(4):47-49. [14] 夏必腊,沈浮,程燕,等.鱼雷追击海上目标问题的数学模型研究[J].数学的实践与认识,2016,42(7):123-126. Xia B L, Shen F, Cheng Y, et al. Study on Mathematical model of torpedo pursuing and attacking naval vessel[J]. Mathematics in Practice and Theory, 2016, 42(7):123-126. [15] 董严红,卫翔,孙春生.鱼雷纯方位攻击提前角优化分析[J].火力与指挥控制,2014,39(8):121-123. Dong Y H, Wei X, Sun C S. Optimization of torpedo bearing-only attack angle in advance[J]. Fire Control & Command Control, 2014, 39(8):121-123. [16] Andreev K V, Rubinovich E Y. Moving observer trajectory control by angular measurements in tracking problem[J]. Automation and Remote Control, 2016, 77(1):134-162. [17] 王艳艳,刘开周,封锡盛.AUV纯方位目标跟踪轨迹优化方法[J].机器人,2014,36(2):179-184. Wang Y Y, Liu K Z, Feng X S. Optimal AUV trajectories for bearings-only tracking[J]. Robot, 2014, 36(2):179-184. [18] Bar-Shalom Y, Kirubarajan T, Li X R. Estimation with applications to tracking and navigation[M]. New York, USA:John Wiley & Sons, 2001. DOI:10.1002/0471221279. [19] Blackrnan S, House A. Design and analysis of modern tracking systems[M]. Boston, USA:Artech House, 1999:1-24.