Abstract:The main challenge of cable-driven parallel robots (CDPRs) stems from the motion control in which cables should keep in tension and coordinate each other during motion. Moreover, the uncertain model parameters also should be considered due to their influences on the motion control to some extent. To solve the above problems, a novel dual-space adaptive synchronization control (DASC) scheme is proposed to combine the adaptive synchronization in the cable length space with the adaptive compensation in the workspace. In the DASC scheme, the cable synchronization error is presented to represent the coordination motion relation among cables, and a dual-space adaptive method is then developed to compensate for the uncertain model parameters in different spaces in real time. The stability of the closed-loop system with the DASC scheme is proved strictly. The experimental results indicate that, compared with the traditional augmented PD (APD) control scheme, the DASC scheme can greatly improve the tracking accuracy of cables and the coordination relation among cables, and eventually increase the control accuracy of the mobile platform. Meanwhile, the adaptive effect in the DASC scheme can effectively compensate for the impact of the mass change of the terminal mobile platform.
[1] Qian S, Zi B, Shang W W, et al. A review on cable-driven parallel robots[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1):66. [2] Lu B, Fang Y C, Sun N, et al. Antiswing control of offshore boom cranes with ship roll disturbances[J]. IEEE Transactions on Control Systems Technology, 2018, 26(2):740-747. [3] 王文杰,于凌涛,杨景,等.基于关节转角估计器的绳驱动手术微器械位置全闭环控制[J].机器人,2018,40(2):231-239.Wang W J, Yu L T, Yang J, et al. Full closed-loop position control of the surgical cable-driven micromanipulator based on joint angle estimator[J]. Robot, 2018, 40(2):231-239. [4] 宋达,张立勋,王炳军,等.柔索牵引式力觉交互机器人控制策略[J].机器人,2018,40(4):440-447. Song D, Zhang L X, Wang B J, et al. The control strategy of flexible cable driven force interactive robot[J]. Robot, 2018, 40(4):440-447. [5] 张立勋,李来禄,姜锡泽,等.柔索驱动的宇航员深蹲训练机器人力控与实验研究[J].机器人,2017,39(5):733-741. Zhang L X, Li L L, Jiang X Z, et al. Force control and experimental study of a cable-driven robot for astronaut deep squat training[J]. Robot, 2017, 39(5):733-741. [6] 南仁东,姜鹏.500m口径球面射电望远镜(FAST)[J].机械工程学报,2017,53(17):1-3. Nan R D, Jiang P. Five-hundred-meter aperture spherical radio telescope (FAST)[J]. Journal of Mechanical Engineering,2017,53(17):1-3. [7] Oh S R, Agrawal S K. A reference governor-based controller for a cable robot under input constraints[J]. IEEE Transactions on Control Systems Technology, 2005, 13(4):639-645. [8] Caverly R J, Forbes J R. Flexible cable-driven parallel manipulator control:Maintaining positive cable tensions[J]. IEEE Transactions on Control Systems Technology, 2018, 26(5):1874-1883. [9] Babaghasabha R, Khosravi M A, Taghirad H D. Adaptive robust control of fully-constrained cable driven parallel robots[J]. Mechatronics, 2015, 25(1):27-36. [10] Fang S Q, Franitza D, Torlo M, et al. Motion control of a tendon-based parallel manipulator using optimal tension distribution[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(3):561-568. [11] Gouttefarde M, Lamaury J, Reichert C, et al. A versatile tension distribution algorithm for n-DOF parallel robots driven by n+2 cables[J]. IEEE Transactions on Robotics, 2015, 31(6):1444-1457. [12] Kozak K, Zhou Q, Wang J S. Static analysis of cable-driven manipulators with non-negligible cable mass[J]. IEEE Transactions on Robotics, 2006, 22(3):425-433. [13] 孙海宁,唐晓强,王晓宇,等.基于索驱动的大型柔性结构振动抑制策略研究[J].机械工程学报,2019,55(11):53-60. Sun H N, Tang X Q, Wang X Y, et al. Vibration suppression of large flexible structure based on cable-driven parallel robots[J]. Journal of Mechanical Engineering, 2019, 55(11):53-60. [14] 欧阳波,尚伟伟.6自由度绳索驱动并联机器人力封闭工作空间的快速求解方法[J].机械工程学报,2013,49(15):34-41. Ouyang B, Shang W W. Efficient computation method of force-closure workspace for 6-DOF cable-driven parallel manipulators[J]. Journal of Mechanical Engineering, 2013, 49(15):34-41. [15] Shang W W, Zhang B Y, Zhang B, et al. Synchronization control in the cable space for cable-driven parallel robots[J]. IEEE Transactions on Industrial Electronics, 2019, 66(6):4544-4554. [16] Khosravi M A, Taghirad H D. Robust PID control of fully-constrained cable-driven parallel robots[J]. Mechatronics, 2014, 24(2):87-97. [17] Asl H J, Yoon J. Robust trajectory tracking control of cable-driven parallel robot[J]. Nonlinear Dynamics, 2017, 89(4):2769-2784. [18] Jamshidifar H, Khosravani S, Fidan B, et al. Vibration decoupled modeling and robust control of redundant cable-driven parallel robots[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2):690-701. [19] Kino H, Yahiro T, Takemura F, et al. Robust PD control using adaptive compensation for completely restrained parallel-wire driven robots:Translational systems using the minimum number of wires under zero-gravity condition[J]. IEEE Transactions on Robotics, 2007, 23(4):803-812. [20] El-Ghazaly G, Gouttefarde M, Creuze V. Adaptive terminal sliding mode control of a redundantly-actuated cable-driven parallel manipulator:CoGiRo[M]//Cable-driven Parallel Robots. Cham, Switzerland:Springer, 2015:179-200. [21] Khosravi M A, Taghirad H D. Dynamic modeling and control of parallel robots with elastic cables:Singular perturbation approach[J]. IEEE Transactions on Robotics, 2014, 30(3):694-704. [22] Slotine J-J E, Li W P. Applied nonlinear control[M]. Englewood Cliffs, USA:Prentice Hall, 1991. [23] Cheng C, Xu W L, Shang J Z. Distributed-torque-based independent joint tracking control of a redundantly actuated parallel robot with two higher kinematic pairs[J]. IEEE Transactions on Industrial Electronics, 2016, 63(2):1062-1070.