Acceleration Feedback Enhanced Controller for Wind Disturbance Rejection of Rotor Unmanned Aerial Vehicle
DAI Bo1,2,3, HE Yuqing1,2, GU Feng1,2, WANG Qianhan1, XU Weiliang4
1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 2. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. University of Auckland, Auckland 1010, New Zealand
Abstract:In order to enhance the wind rejection ability of unmanned aerial vehicle (UAV) to achieve safe flight and precision control, a wind disturbance rejection method based on acceleration feedback (AF) is proposed for rotor UAV. By introducing linear and angular AF into the original controller, a faster and more accurate attitude and position tracking performance can be obtained without changing the structure of the original controller. Moreover, a simple and fast UAV parameters identification method suitable for acceleration feedback is proposed to deploy AF on a practical UAV system. By using the proposed method, AF is deployed on a hex-rotor and tested in outdoor environment with continuous or gusty winds. The experimental results demonstrate that the AF enhanced controller can suppress these two kinds of wind disturbances effectively and the control accuracy of UAV system is greatly improved.
[1] Girard A R, Howell A S, Hedrick J K. Border patrol and surveillance missions using multiple unmanned air vehicles[C]//IEEE Conference on Decision and Control. Piscataway, USA:IEEE, 2004:620-625. [2] Qi J T, Song D L, Shang H, et al. Search and rescue rotary-wing UAV and its application to the Lushan Ms 7.0 Earthquake[J]. Journal of Field Robotics, 2016, 33(3):290-321. [3] 曹蔚然,朱琳琳,韩建达.一种可迭代基于多向自相关的航拍电力线图像增强方法[J].机器人,2015,37(6):738-747.Cao W R, Zhu L L, Han J D. An iterable multidirectional autocorrelation approach for aerial power line image enhancement[J]. Robot, 2015, 37(6):738-747. [4] Salih A L, Moghavvemi M, Mohamed H A F, et al. Modelling and PID controller design for a quadrotor unmanned air vehicle[C]//IEEE International Conference on Automation Qualityand Testing Robotics. Piscataway, USA:IEEE, 2010. DOI:10.1109/AQTR.2010.5520914. [5] He Y Q, Han J D. Acceleration feedback enhanced H∞ disturbance attenuation control[C]//33rd Annual Conference of the IEEE-Industrial-Electronics-Society. Piscataway, USA:IEEE, 2007:839-844. [6] Nicotra M M, Garone E, Naldi R, et al. Nested saturation control of an UAV carrying a suspended load[C]//American Control Conference. Piscataway, USA:IEEE, 2014:3585-3590. [7] Madani, T, Benallegue A. Backstepping control for a quadrotor helicopter[C]//IEEE/RSJ International Conference on Intelli-gent Robots and Systems. Piscataway, USA:IEEE, 2006:3255-3260. [8] He Y Q, Han J D. Acceleration-feedback-enhanced robust control of an unmanned helicopter[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(4):1236-1250. [9] Su J Y, Chen W H, Yang J. On relationship between time-domain and frequency-domain disturbance observers and its applications[J]. Journal of Dynamic Systems, Measurement, and Control, 2016, 138(9). DOI:10.1115/1.4033631. [10] 刘一莎,杨晟萱,王伟.四旋翼飞行器的自抗扰飞行控制方法[J].控制理论与应用,2015,32(10):1351-1360.Liu Y S, Yang S X, Wang W. An active disturbance-rejection flight control method for quad-rotor unmanned aerial vehicles[J]. Control Theory & Applications, 2015, 32(10):1351-1360. [11] Han J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3):900-906. [12] Ohishi K, Nakao M, Ohnishi K, et al. Microprocessor-controlled DC motor for load-insensitive position servo system[J]. IEEE Transactions on Industrial Electronics, 1987, 34(1):44-49. [13] Tomić T. Evaluation of acceleration-based disturbance observation for multicopter control[C]//13th European Control Conference. Piscataway, USA:IEEE, 2014:2937-2944. [14] Xu W L, Han J D, Tso S K. Experimental study of contact transition control incorporating joint acceleration feedback[J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(3):292-301. [15] Han J D, Wang Y C, Tan D L, et al. Acceleration feedback control for direct-drive motor system[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2000:1068-1074. [16] Lee S J, Kim S, Johansson K H, et al. Robust acceleration control of a hexarotor UAV with a disturbance observer[C]//IEEE Conference on Decision and Control. Piscataway, USA:IEEE, 2016:4166-4171. [17] Escareño O J, Salazar S, Romero H, et al. Trajectory control of a quadrotor subject to 2D wind disturbances[J]. Journal of Intelligent & Robotic Systems, 2013, 70(1-4):51-63. [18] Léonard F, Martini A, Abba G. Robust nonlinear controls of model-scale helicopters under lateral and vertical wind gusts[J]. IEEE Transactions on Control Systems Technology, 2012, 20(1):154-163. [19] Cabecinhas D, Cunha R, Silvestre C. A globally stabilizing path following controller for rotorcraft with wind disturbance rejection[J]. IEEE Transactions on Control Systems Technology, 2015, 23(2):708-714. [20] Lee T, Leok M, McClamroch N H. Control of complex maneu-vers for a quadrotor UAV using geometric methods on SE(3)[EB/OL]. (2010-09-09)[2019-04-15]. https://arxiv.org/abs/1003.2005. [21] Soule H A, Miller M P. The experimental determination of the moments of inertia of airplanes[R/OL]. USA:National Adviso-ry Committee for Aeronautics, 1934.[2019-04-15]. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930091541.pdf. [22] 周璠,郑伟,汪增福.基于多异类传感器信息融合的微型多旋翼无人机实时运动估计[J].机器人,2015,37(1):94-101.Zhou F, Zheng W, Wang Z F. Real-time motion estimation for UAVs based on dissimilar multi-sensor data fusion[J]. Robot, 2015, 37(1):94-101. [23] Han J D, He Y Q, Xu W L. Angular acceleration estimation and feedback control:An experimental investigation[J]. Mechatronics, 2007, 17(9):524-532.