On 3D Motion and Micro-manipulation of a Millimeter-scale Submarine-shaped Robot in Low Reynolds Number Liquid
SUN Qiang1,2, WANG Jingyi2,3, ZHANG Ying1, JIAO Niandong2,3
1. Information&Control Engineering Faculty, Shenyang Jianzhu University, Shenyang 110168, China; 2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; 3. Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110016, China
孙强, 王敬依, 张颖, 焦念东. 毫米级潜艇形机器人在低雷诺数液体中的3D运动及微操作方法研究[J]. 机器人, 2020, 42(1): 89-99.DOI: 10.13973/j.cnki.robot.190230.
SUN Qiang, WANG Jingyi, ZHANG Ying, JIAO Niandong. On 3D Motion and Micro-manipulation of a Millimeter-scale Submarine-shaped Robot in Low Reynolds Number Liquid. ROBOT, 2020, 42(1): 89-99. DOI: 10.13973/j.cnki.robot.190230.
Abstract:In order to simulate the 3D motion and micro-manipulation of the robot in human body environment, a 3D motion and micro-manipulation method of the millimeter-scale submarine-shaped robot in horizontal attitude is proposed in low Reynolds number liquid. Firstly, the submarine-shaped robot and the 4-coil magnetic drive system are designed and fabricated, and the finite element simulation of the magnetic field system is carried out by COMSOL software. Then, the forces on the robot in low Reynolds number liquid are analyzed, and the robot motion model is established. Furthermore, its various motion forms are studied. The robot can perform 3D motion along a specified path in low Reynolds number liquid, such as vertical up motion, diagonal rising motion, right angle motion and spiral upward motion, while maintaining its horizontal attitude, and the maximum speed is 1.2 mm/s. With the developed wireless electrical energy transfer system, electrical energy can be transmitted into the small-scale environment. With the wireless electrical energy, the robot can drive the gripper in its front end to perform micro-manipulations such as gripping, carrying, and releasing.
[1] Sitti M. Microscale and nanoscale robotics systems-Character-istics, state of the art, and grand challenges[J]. IEEE Robotics & Automation Magazine, 2007, 14(1):53-60. [2] Carlsen R W, Sitti M. Bio-hybrid cell-based actuators for microsystems[J]. Small, 2014, 10(19):3831-3851. [3] Frutiger D R, Vollmers K, Kratochvil B E. Small, fast, and under control:Wireless resonant magnetic micro-agents[J]. International Journal of Robotics Research, 2010, 29(5):613-636. [4] d'Argrentre A P, Perry S, Iwata Y, et al. Programmable medi-cine:Autonomous, ingestible, deployable hydrogel patch and plug for stomach ulcer therapy[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2018:1511-1518. [5] Khalil I S M, Tabak A F, Hosney A, et al. Sperm-shaped magnetic microrobots:Fabrication using electrospinning, modeling, and characterization[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2016:1939-1944. [6] Go G, Choi H, Jeong S, et al. Electromagnetic navigation system using simple coil structure (4 coils) for 3D locomotive microrobot[J]. IEEE Transactions on Magnetics, 2015, 51(4). DOI:10.1109/TMAG.2014.2364543. [7] Búzás A, Kelemen L, Mathesz A, et al. Light sailboats:Laser driven autonomous microrobots[J]. Applied Physics Letters, 2012, 101(4). DOI:10.1063/1.4737646. [8] Sul O J, Falvo M R, Taylor R M II, et al. Thermally actuated untethered impact-driven locomotive microdevices[J]. Applied Physics Letters, 2006, 89(20). DOI:10.1063/1.2388135. [9] Hu W, Ishii K S, Ohta A T. Micro-assembly using optically controlled bubble microrobots[J]. Applied Physics Letters, 2011, 99(9). DOI:10.1063/1.3631662. [10] Ahmed D, Baasch T, Blondel N, et al. Neutrophil-inspired propulsion in a combined acoustic and magnetic field[J]. Nature Communications, 2017, 8. DOI:10.1038/s41467-017-00845-5. [11] Ahmed D, Dillinger C, Hong A, et al. Artificial acousto-magnetic soft microswimmers[J]. Advanced Materials Technologies, 2017, 2(7). DOI:10.1002/admt.201700050. [12] Tottori S, Nelson B J. Artificial helical microswimmers with mastigoneme-inspired appendages[J]. Biomicrofluidics, 2013, 7(6). DOI:10.1063/1.4827915. [13] Huang T Y, Qiu F, Tung H W, et al. Cooperative manipulation and transport of microobjects using multiple helical microcarriers[J]. RSC Advances, 2014, 4(51):26771-26776. [14] Barbot A, Decanini D, Hwang G. On-chip microfluidic multimodal swimmer toward 3D navigation[J]. Scientific Reports, 2016, 6. DOI:10.1038/srep19041. [15] Peters C, Hoop M, Pane S, et al. Degradable magnetic composites for minimally invasive interventions:Device fabrication, targeted drug delivery, and cytotoxicity tests[J]. Advanced Materials, 2016, 28(3):533-538. [16] Walker D, Käsdorf B T, Jeong H H, et al. Enzymatically active biomimetic micropropellers for the penetration of mucin gels[J]. Science Advances, 2015, 1(11). DOI:10.1126/sciadv.1500501. [17] Qiu F, Zhang L, Peyer K E, et al. Noncytotoxic artificial bacterial flagella fabricated from biocompatible ORMOCOMP and iron coating[J]. Journal of Materials Chemistry B, 2014, 2(4):357-362. [18] Tottori S, Zhang L, Qiu F, et al. Magnetic helical micromachines:Fabrication, controlled swimming, and cargo transport[J]. Advanced Materials, 2012, 24(6):811-816. [19] Hu W, Lum G Z, Mastrangeli M, et al. Small-scale soft-bodied robot with multimodal locomotion[J]. Nature, 2018, 554(7690):81-85. [20] Tottori S, Nelson B J. Controlled propulsion of two-dimensional microswimmers in a precessing magnetic field[J]. Small, 2018, 14(24). DOI:10.1002/smll.201800722. [21] Yang L, Wang Q, Vong C I, et al. A miniature flexible-link magnetic swimming robot with two vibration modes:Design, modeling and characterization[J]. IEEE Robotics and Automation Letters, 2017, 2(4):2024-2031. [22] Chung S E, Dong X, Sitti M. Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper[J]. Lab on a Chip, 2015, 15(7):1667-1676. [23] Dong X, Sitti M. Planning spin-walking locomotion for automatic grasping of microobjects by an untethered magnetic microgripper[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2017:6612-6618. [24] Erin O, Giltinan J, Tsai L, et al. Design and actuation of a magnetic millirobot under a constant unidirectional magnetic field[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2017:3404-3410. [25] Jeon S, Hoshiar A K, Kim S, et al. Improving guidewire-mediated steerability of a magnetically actuated flexible microrobot[J]. Micro and Nano Systems Letters, 2018, 6. DOI:10. 1186/s40486-018-0077-y. [26] Turan M, Almalioglu Y, Konukoglu E, et al. A deep learning based 6:degree-of-freedom localization method for endoscopic capsule robots[EB/OL]. (2017-05-15)[2019-05-01]. https://arxiv.org/pdf/1705.05435.pdf. [27] Giltinan J, Sitti M. Simultaneous six-degree-of-freedom control of a single-body magnetic microrobot[J]. IEEE Robotics and Automation Letters, 2019, 4(2):508-514. [28] Ye C W, Liu J, Wu X Y, et al. Hydrophobicity influence on swimming performance of magnetically driven miniaturehelical swimmers[J]. Micromachines, 2019, 10(3). DOI:10. 3390/mi10030175. [29] Khalil I S M, Tabak A F, Abou Seif M, et al. Swimming in low Reynolds numbers using planar and helical flagellar waves[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2017:1907-1912. [30] Khalil I S M, Tabak A F, Hamed Y, et al. Swimming back and forth using planar flagellar propulsion at low Reynolds numbers[J]. Advanced Science, 2018, 5(2). DOI:10.1002/advs.201700461. [31] Huang H W, Chao Q, Sakar M S, et al. Optimization of tail geometry for the propulsion of soft microrobots[J]. IEEE Robotics and Automation Letters, 2017, 2(2):727-732. [32] Khalil I S M, Tabak, Sitti M, et al. Independent actuation of two-tailed microrobots[J]. IEEE Robotics and Automation Letters, 2018, 3(3):1703-1710. [33] 赵凯华,陈熙谋.电磁学[M].2版.北京:高等教育出版社,2006.Zhao K H, Chen X M. Electromagnetics[M]. 2nd ed. Beijing:Higher Education Press, 2006. [34] 吴耀祖.低雷诺数流体力学介绍[J].力学与实践,1981,3(1):34-40,54.Wu Y Z. Introduction to low Reynolds number fluid mechanics[J]. Mechanics in Engineering, 1981, 3(1):34-40,54. [35] Jain R K, Datta S, Majumder S, et al. Development of multi micro manipulation system using IPMC micro grippers[J]. Journal of Intelligent and Robotic Systems, 2014, 74(3-4):547-569.