Abstract:In the multi-robot simultaneous localization and mapping (MSLAM), perceptual aliasing will generate highly correlated and mutual-consistent spurious inter-map loop closures, which will lead to the failure of location and map deformations. A general continuous-discrete graph model based on Markov random field (MRF) is proposed to solve this problem. The continuous graph models the standard pose graph, and the discrete graph establishes the rejection model by explicit modeling of the correlation of outliers. On this basis, the convex relaxation method is further used to transform the non-convex and NP (non-deterministic polynomial) complete combinatorial optimization problem represented by the continuous-discrete graph into a semidefinite programming (SDP) problem, which is convenient to solve by using off-the-shelf convex solvers. Simulation and experiment results demonstrate that the proposed method can improve the robustness of the pose graph to the outliers caused by perceptual aliasing, and the result doesn't depend on the initial value of the pose. In the case of an outlier ratio of 50%, the rejection rate is still up to 99.8%, and the map fusion accuracy is better than the existing state-of-the-art DCS (dynamic covariance scaling) and PCM (pairwise consistent measurement) methods.
[1] 邹宇华,陈伟海,王建华,等.基于信息增益一致性的多机器人地图融合算法[J].机器人,2014,36(5):619-626.Zou Y H, Chen W H, Wang J H, et al. Multi-robot map merging based on the consistency of information gain[J]. Robot, 2014, 36(5):619-626. [2] Saeedi S, Trentini M, Seto M, et al. Multiple-robot simultaneous localization and mapping:A review[J]. Journal of Field Robotics, 2016, 33(1):3-46. [3] Benedettelli D, Garulli A, Giannitrapani A. Cooperative SLAM using M-space representation of linear features[J]. Robotics and Autonomous Systems, 2012, 60(10):1267-1278. [4] Carlone L, Ng M K, Du J, et al. Rao-Blackwellized particle filters multi robot SLAM with unknown initial correspondences and limited communication[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2010:243-249. [5] Birk A, Carpin S. Merging occupancy grid maps from multiple robots[J]. Proceedings of the IEEE, 2006, 94(7):1384-1397. [6] Huang W H, Beevers K R. Topological map merging[J]. International Journal of Robotics Research, 2005, 24(8):601-613. [7] 王巍,浦云明,李旺.一种基于CI因子图的多机器人2D地图融合算法[J].机器人,2017,39(6):872-878.Wang W, Pu Y M, Li W. A multi-robot 2D map fusion algorithm based on CI factor graph[J]. Robot, 2017, 39(6):872-878. [8] 卫恒,吕强,梁建,等.基于ORB的多机器人SLAM地图融合算法[J].装甲兵工程学院学报,2018,32(1):85-89.Wei H, Lv Q, Liang J, et al. Multi-robot SLAM map fusion algorithm based on ORB[J]. Journal of Academy of Armored Force Engineering, 2018, 32(1):85-89. [9] 马树军,杨磊,白昕晖,等.多机器人同步定位与地图构建的地图融合算法的改进[J].控制理论与应用,2019,36(8):1345-1350.Ma S J, Yang L, Bai X H, et al. Improvement of map fusion algorithm for multi-robot simultaneous localization and mapping[J]. Control Theory & Applications, 2019, 36(8):1345-1350. [10] Cadena C, Carlone L, Carrillo H, et al. Past, present, and future of simultaneous localization and mapping:Toward the robust-perception age[J]. IEEE Transactions on Robotics, 2016, 32(6):1309-1332. [11] Kaess M, Johannsson H, Roberts R, et al. iSAM2:Incremental smoothing and mapping using the Bayes tree[J]. International Journal of Robotics Research, 2012, 31(2):216-235. [12] Kümmerle R, Grisetti G, Strasdat H, et al. g2o:A general framework for graph optimization[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2011:3607-3613. [13] Dellaert F, Kaess M. Factor graphs for robot perception[J]. Foundations and Trends® in Robotics, 2017, 6(1-2):1-139. [14] Sünderhauf N, Protzel P. Towards a robust back-end for pose graph SLAM[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2012:1254-1261. [15] Olson E, Agarwal P. Inference on networks of mixtures for robust robot mapping[J]. International Journal of Robotics Research, 2013, 32(7):826-840. [16] Agarwal P, Tipaldi G D, Spinello L, et al. Robust map optimization using dynamic covariance scaling[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2013:62-69. [17] Carlone L, Censi A, Dellaert F. Selecting good measurements via l1 relaxation:A convex approach for robust estimation overgraphs[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2014:2667-2674. [18] Sünderhauf N, Protzel P. Switchable constraints for robust pose graph SLAM[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2012:1879-1884. [19] Latif Y, Cadena C, Neira J. Robust loop closing over time for pose graph SLAM[J]. International Journal of Robotics Research, 2013, 32(14):1611-1626. [20] Mangelson J G, Dominic D, Eustice R M, et al. Pairwise consistent measurement set maximization for robust multi-robot mapmerging[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2018:2916-2923. [21] Pfingsthorn M, Birk A. Generalized graph SLAM:Solving local and global ambiguities through multimodal and hyperedge constraints[J]. International Journal of Robotics Research, 2016, 35(6):601-630. [22] Blake A, Kohli P, Rother C. Markov random fields for vision and image processing[M]. Cambridge, USA:MIT Press, 2011. [23] Carlone L, Tron R, Daniilidis K, et al. Initialization techniques for 3D SLAM:A survey on rotation estimation and its use inpose graph optimization[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2015:4597-4604. [24] Carlone L, Calafiore G C. Convex relaxations for pose graph optimization with outliers[J]. IEEE Robotics and Automation Letters, 2018, 3(2):1160-1167. [25] Carlone L, Rosen D M, Calafiore G, et al. Lagrangian dualityin 3D SLAM:Verification techniques and optimal solutions[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2015:125-132. [26] Grant M, Boyd S. CVX:Matlab software for disciplined convex programming, version 2.1[EB/OL].[2019-06-24]. http://cvxr.com/cvx/. [27] Sturm J, Engelhard N, Endres F, et al. A benchmark for the evaluation of RGB-D SLAM systems[C]//IEEE/RSJ InternationalConference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2012:573-580. [28] Kaess M, Ranganathan A, Dellaert F. iSAM:Incremental smoo-thing and mapping[J]. IEEE Transactions on Robotics, 2008, 24(6):1365-1378. [29] Carlone L, Aragues R, Castellanos J A, et al. A fast and accurate approximation for planar pose graph optimization[J]. International Journal of Robotics Research, 2014, 33(7):965-987. [30] Rosen D M, Carlone L, Bandeira A S, et al. SE-Sync:A certifiably correct algorithm for synchronization over the special Euclidean group[J]. International Journal of Robotics Research, 2019, 38(2-3):95-125. [31] Schmuck P, Chli M. CCM-SLAM:Robust and efficient centralized collaborative monocular simultaneous localization and mapping for robotic teams[J]. Journal of Field Robotics, 2019, 36(4):763-781. [32] Briales J, Gonzalez-Jimenez J. Cartan-sync:Fast and global SE(d)-synchronization[J]. IEEE Robotics and Automation Letters, 2017, 2(4):2127-2134.