Double-Layered CPG Based Motion Control Method of the 3D Snake-like Robot
QIAO Guifang1,2, WEI Zhong2, ZHANG Ying1, WAN Qi1, SONG Guangming2
1. School of Automation, Nanjing Institute of Technology, Nanjing 211167, China;
2. School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China
Abstract:To control the multi-mode motion of the 3D snake-like robot, a motion control method based on the double-layered central pattern generator (CPG) is presented. The proposed double-layered CPG network includes the rhythmical layer and pattern layer. The CPG neurons in rhythmical layer control the phase relation between pitch joint groups and yaw joint groups of the 3D snake-like robot. The CPG neurons in pattern layer determine the phase relation and trajectory of each joint in the identical group of the 3D snake-like robot. Firstly, the CPG neurons are modeled by the Kuramoto oscillator. The layered architecture and the coupling topology of the proposed CPG network are determined. Secondly, the control parameters of four kinds of locomotion of the 3D snake-like robot, e.g. lateral rolling locomotion, sidewinding locomotion, slithering locomotion, and steering locomotion, are calculated based on the constraints of serpenoid curve. Finally, the control performance of the proposed double-layered CPG network is evaluated by the co-simulation and experiments. As shown in the experimental results, the actual velocity of the 3D snake-like robot is 3.9 cm/s, 9.0 cm/s, 2.1 cm/s, and 10.8°/s respectively when the snake-like robot performs lateral rolling locomotion, sidewinding locomotion, slithering locomotion, and steering locomotion. Consequently, the proposed method can control the multi-mode motion of the 3D snake-like robot effectively and flexibly.
[1] Liljebäck P. Snake robots:Modelling, mechatronics, and control[M]. London, UK:Springer, 2013.
[2] Liljeback P, Pettersen K Y, Stavdahl O, et al. A review on modelling, implementation, and control of snake robots[J]. Robotics and Autonomous Systems, 2012, 60(1):29-40.
[3] 卢振利,李斌.蛇形机器人蜿蜒游动性能动力学仿真分析[J].机器人,2015,37(6):748-753.Lu Z L, Li B. Dynamics simulation analysis on serpentine swimming performance of a snake-like robot[J]. Robot, 2015, 37(6):748-753.
[4] 苏中,张双彪,李兴城.蛇形机器人的研究与发展综述[J].中国机械工程,2015,26(3):414-425.Su Z, Zhang S B, Li X C. Present situation and development tendency of snake-like robots[J]. China Mechanical Engineering, 2015, 26(3):414-425.
[5] Ijspeert A J. Central pattern generators for locomotion control in animals and robots:A review[J]. Neural Networks, 2008, 21(4):642-653.
[6] Yu J, Tan M, Chen J, et al. A survey on CPG-inspired control models and system implementation[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 25(3):441-456.
[7] 吴启迪,刘成菊,张家奇,等.生物诱导的机器人行走控制研究进展[J].中国科学F辑:信息科学,2009,39(10):1080-1094.Wu Q D, Liu C J, Zhang J Q, et al. Advances in bio-inspired robot walking control[J]. Science in China Series F:Information Sciences, 2009,39(10):1080-1094.
[8] Kimura H, Fukuoka Y, Cohen A H. Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts[J]. International Journal of Robotics Research, 2007, 26(5):475-490.
[9] 卢振利,马书根,李斌,等.基于循环抑制CPG模型控制的蛇形机器人3维运动[J].自动化学报,2006,32(1):133-139.Lu Z L, Ma S G, Li B, et al. Serpentine locomotion of a snake-like robot controlled by cyclic inhibitory CPG model[J]. Acta Automatica Sinica, 2006, 32(1):133-139.
[10] 唐超权,王明辉,李斌,等.融合机械元的蛇形机器人循环抑制中枢模式发生器控制方法[J].机器人,2013,35(1):123-128.Tang C Q, Wang M G, Li B, et al. A cyclic inhibitory central pattern generator control method integrated with mechanical oscillators for snake robots[J]. Robot, 2013, 35(1):123-128.
[11] Crespi A, Ijspeert A J. Online optimization of swimming and crawling in an amphibious snake robot[J]. IEEE Transactions on Robotics, 2008, 24(1):75-87.
[12] 唐超权,马书根,李斌,等.基于神经步进激励机制的蛇形机器人环境自适应仿生控制策略[J].机械工程学报,2013,49(1):53-62.Tang C Q, Ma S G, Li B, et al. Self-adaptable biomimetic control strategy for snake robots based on neural stepping stimulation mechanism[J]. Journal of Mechanical Engineering, 2013, 49(1):53-62.
[13] Brown T G. The factors in rhythmic activity of the nervous system[J]. Proceedings of the Royal Society of London:Series B, 1912, 85(579):278-289.
[14] McCrea D A, Rybak I A. Organization of mammalian locomotor rhythm and pattern generation[J]. Brain Research Reviews, 2008, 57(1):134-146.
[15] Nassour J, Henaff P, Benouezdou F, et al. Multi-layered multi-pattern CPG for adaptive locomotion of humanoid robots[J]. Biological Cybernetics, 2014, 108(3):291-303.
[16] Li C, Lowe R, Ziemke T. A novel approach to locomotion learning:Actor-critic architecture using central pattern generators and dynamic motor primitives[J]. Front Neurorobot, 2014. DOI:10.3389/fnbot.2014.00023.
[17] 杨贵志,马书根,李斌,等.面向蛇形机器人的3维步态控制的层次化联结中枢模式生成器模型[J].自动化学报,2013,39(10):1611-1622.Yang G Z, Ma S G, Li B, et al. A hierarchical connectionist central pattern generator model for controlling three-dimensional gaits of snake-like robots[J]. Acta Automatica Sinica, 2013, 39(10):1611-1622.
[18] Hirose S, Yamada H. Snake-like robots[Tutorial] [J]. IEEE Robotics & Automation Magazine, 2009, 16(1):88-98.
[19] Saito M, Fukaya M, Iwasaki T. Serpentine locomotion with robotic snakes[J]. IEEE Control Systems Magazine, 2002, 22(1):64-81.
[20] Ma S G. Analysis of snake movement forms for realization of snake-like robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1999:3007-3013.
[21] Hu D, Nirody J, Scott T, et al. The mechanics of slithering locomotion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(25):10081-10085.
[22] Hirose S. Biologically inspired robots:Snake-like locomotors and manipulators[M]. Oxford, UK:Oxford University Press, 1993.
[23] Wu X D, Ma S G. Neurally controlled steering for collision-free behavior of a snake robot[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6):2443-2449.
[24] Enner F, Rollinson D, Choset H. Simplified motion modelingfor snake robots[C]//IEEE International Conference on Robo-tics and Automation. Piscataway, USA:IEEE, 2012:4216-4221.