郑荣, 吕厚权, 于闯, 韩晓军, 李默竹, 魏奥博. AUV与自主移动坞站对接的技术研究及系统设计实现[J]. 机器人, 2019, 41(6): 713-721. DOI: 10.13973/j.cnki.robot.180753
引用本文: 郑荣, 吕厚权, 于闯, 韩晓军, 李默竹, 魏奥博. AUV与自主移动坞站对接的技术研究及系统设计实现[J]. 机器人, 2019, 41(6): 713-721. DOI: 10.13973/j.cnki.robot.180753
ZHENG Rong, LÜ, Houquan, HAN Xiaojun, LI Mozhu, WEI Aobo. Technical Research, System Design and Implementation of Docking between AUV and Autonomous Mobile Dock Station[J]. ROBOT, 2019, 41(6): 713-721. DOI: 10.13973/j.cnki.robot.180753
Citation: ZHENG Rong, LÜ, Houquan, HAN Xiaojun, LI Mozhu, WEI Aobo. Technical Research, System Design and Implementation of Docking between AUV and Autonomous Mobile Dock Station[J]. ROBOT, 2019, 41(6): 713-721. DOI: 10.13973/j.cnki.robot.180753

AUV与自主移动坞站对接的技术研究及系统设计实现

Technical Research, System Design and Implementation of Docking between AUV and Autonomous Mobile Dock Station

  • 摘要: 为了实现多海洋机器人自主出海协同作业、进一步提高自主水下机器人(AUV)的综合作业能力、丰富海洋无人作业场景、延长AUV自主作业的时间,研究了水下自主机器人动态对接技术.针对包容式移动坞站设计了一套基于声学导引的回坞系统,根据坞站结构特征、导引传感器解算原理规划了末程回坞路径.在保障回坞安全的前提下,以移动坞站为中心将回坞水域划分为安全区、危险区、入坞区,根据AUV与坞站间的相对位置关系在安全区和回坞区内规划了回坞路径,并对应不同路径设计了相应的控制策略和导引算法.最后,通过湖上试验验证了回坞系统的可靠性.相关导引算法、控制策略通用性较强,在一系列的悬停入坞试验、移动入坞试验中具有较高的鲁棒性;在水下不同深度和不同航速的入坞试验中,所设计的方法能够保证较高的入坞成功率,技术固化后的入坞测试显示,入坞成功率在90%以上.

     

    Abstract: The moving docking technology of underwater autonomous vehicles is studied in order to achieve collaborative work of multiple marine robots at sea, improve the comprehensive operation capability of autonomous underwater vehicle (AUV), expand the unmanned operation scenarios, and increase the time for AUV to work autonomously. A docking system based on acoustic guidance is designed for funnel-type dock station, and the ultimate path back to the dock station is planned according to the structural characteristics of the docking station and the calculation principle of guiding sensor. Under the premise of ensuring the docking safety, the water body for docking is divided into safe area, dangerous area and docking area. According to the relative position relation between the AUV and the docking station, the docking path is planned in the safe area and the docking area, and the corresponding control strategy and guidance algorithm are designed for different paths. Finally, the reliability of the docking system is verified by the lake test. The related guidance algorithm and control strategy are of strong universality and high robustness in a series of hovering docking tests and moving docking tests. In docking tests at different depths and speeds under water, the designed methods can ensure a higher docking success rate. In docking tests with the solidified technology, the docking success rate is higher than 90%.

     

/

返回文章
返回