Human-Robot Interaction for Surgical Robot Based on Fuzzy Model Reference Learning Control
LIN Andi1, GAN Minfeng2, GE Han1, TANG Yucun1, XU Haidong1, KUANG Shaolong1, HUANG Lixin2, SUN Lining1
1. School of Mechanical and Electric Engineering, Soochow University, Suzhou 215021, China;
2. The First Affiliated Hospital of Soochow University, Suzhou 215006, China
Abstract:In order to solve the instability problem in human-robot interaction in the robot-assisted surgery environment and the difficulty in modeling the personal factors of the doctor, a variable admittance human-robot cooperative control method is proposed based on fuzzy model reference learning. Firstly, the natural movement characteristics of human arm are taken as the reference model for fuzzy learning control, and the variable damping coefficient adjustment parameter rules are trained for the fuzzy admittance controller by an offline learning mechanism. Then a variable admittance control method is constructed based on variable damping parameter adjustment, taking the doctor's dragging force on the robot and the speed of the robot as the input, to output the desired speed of the robot. The offline training experimental results show that after offline training 10 times, the maximum error of the human-machine cooperation velocity is less than 17 mm/s, and the maximum error of the human-machine cooperation trajectory is less than 15 mm. Therefore, the proposed method has both a better tracking speed and a better precision than fuzzy control based on fixed admittance parameters.
[1] Argall B D, Billard A G. A survey of tactile human-robot interactions[J]. Robotics and Autonomous Systems, 2010, 58(10):1159-1176. [2] Ranatunga I, Lewis F L, Popa D O, et al. Adaptive admittance control for human-robot interaction using model reference design and adaptive inverse filtering[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1):278-285. [3] Haddadin S, Croft E. Physical human-robot interaction[M]//Springer Handbook of Robotics. Berlin, Germany:Springer-Verlag, 2016. DOI:10.1007/978-3-319-32552-1_81. [4] Tsumugiwa T, Yokogawa R, Yoshida K. Stability analysis for impedance control of robot for human-robot cooperative task system[C]//IEEE/RSJ International Conference on IntelligentRobots and Systems. Piscataway, USA:IEEE, 2007:3883-3888. [5] 段星光,韩定强,马晓东,等.机械臂在未知环境下基于力/位/阻抗的多交互控制[J].机器人,2017,39(4):449-457.Duan X G, Han D Q, Ma X D, et al. Multi-interaction controlfor manipulators in unknown environments based on hybrid position-impedance-force control[J]. Robot, 2017, 39(4):449-457. [6] Kosuge K, Yoshida H, Fukuda T. Dynamic control for robot-human collaboration[C]//IEEE International Workshop on Robot and Human Communication. Piscataway, USA:IEEE, 1993:398-401. [7] Duchaine V, Gosselin C M. General model of human-robot cooperation using a novel velocity based variable impedance control[C]//2nd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Piscataway, USA:IEEE, 2007:446-451. [8] Ranatunga I, Lewis F L, Popa D O, et al. Adaptive admittance control for human-robot interaction using model reference design and adaptive inverse filtering[J]. IEEE Transactions on Control Systems Technology, 2017, 25(1):278-285. [9] Dimeas F, Aspragathos N. Fuzzy learning variable admittance control for human-robot cooperation[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2014:4770-4775. [10] Dimeas F, Aspragathos N. Online stability in human-robot cooperation with admittance control[J]. IEEE Transactions on Haptics, 2016, 9(2):267-278. [11] Kazanzides P, Zuhars J, Mittelstadt B, et al. Force sensing and control for a surgical robot[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1992:612-617. [12] Ho S C, Hibberd R D, Davies B L. Robot assisted knee surgery[J]. IEEE Engineering in Medicine and Biology Magazine, 1995, 14(3):292-300. [13] Banks S A. Haptic robotics enable a systems approach to design of a minimally invasive modular knee arthroplasty[J]. American Journal of Orthopedics, 2009, 38(2 Suppl.):23-27. [14] Maillet P, Nahum B, Blondel L, et al. BRIGIT, a robotized tool guide for orthopedic surgery[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2005:211-216. [15] Kwon D S, Yoon Y S, Lee J J, et al. ARTHROBOT:A new surgical robot system for total hip arthroplasty[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2001:1123-1128. [16] Kapoor A, Li M, Taylor R H. Constrained control for surgical assistant robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2006:231-236. [17] Hagn U, Nickl M, Jörg S, et al. The DLR MIRO:A versatile lightweight robot for surgical applications[J]. Industrial Robot, 2013, 35(4):324-336. [18] Baumeyer J, Vieyres P, Miossec S, et al. Robotic comanipula-tion with 6 DoF admittance control:Application to patient positioning in proton-therapy[C]//IEEE International Workshop on Advanced Robotics and Its Social Impacts. Piscataway, USA:IEEE, 2015:1-6. [19] 何仁,刘存香,李楠.轿车电磁制动与摩擦制动集成系统的模糊控制[J].机械工程学报,2010,46(24):83-87.He R, Liu C X, Li N. Fuzzy control of the integrated system of electromagnetic brake and friction brake of car[J]. Journal of Mechanical Engineering, 2010, 46(24):83-87. [20] Didekova Z, Kajan S, Kozakova A, et al. Intelligent adaptive fuzzy control[C]//Cybernetics & Informatics. Piscataway, USA:IEEE, 2018. DOI:10.1109/CYBERI.2018.8337549. [21] 吴常铖,宋爱国,章华涛,等.基于刚度模糊观测的假手反演控制策略[J].机器人,2013,35(6):686-691.Wu C C, Song A G, Zhang H T, et al. A backstepping control strategy for prosthetic hand based on fuzzy observation of stiffness[J]. Robot, 2013, 35(6):686-691. [22] 李进,刘洋洋,胡金芳.人机协同下辅助驾驶系统的车道保持控制[J].机械工程学报,2018,54(2):169-175.Li J, Liu Y Y, Hu J F. Lane tracking of driver assistance systemwith man-machine-coordination[J]. Journal of Mechanical Engineering, 2018, 54(2):169-175. [23] 杜志江,王伟,闫志远,等.基于模糊强化学习的微创外科手术机械臂人机交互方法[J].机器人,2017,39(3):363-370.Du Z J, Wang W, Yan Z Y, et al. A physical human-robot interaction algorithm based on fuzzy reinforcement learning for minimally invasive surgery manipulator[J]. Robot, 2017, 39(3):363-370. [24] Layne J R, Passino K M. Fuzzy model reference learning control for cargo ship steering[C]//IEEE International Symposium on Intelligent Control. Piscataway, USA:IEEE, 1993. DOI:10.1109/ISIC.1993.397670. [25] 韩亚丽,许有熊,高海涛,等.基于导纳控制的膝关节外骨骼摆动控制研究[J].自动化学报,2016,42(12):1943-1950.Han Y L, Xu Y X, Gao H T, et al. Knee joint exoskeleton swing control with admittance control[J].Acta Automatica Sinica,2016, 42(12):1943-1950. [26] Okunev V, Nierhoff T, Hirche S. Human-preference-based control design:Adaptive robot admittance control for physical human-robot interaction[C]//IEEE International Symposium on Robot and Human Interactive Communication. Piscataway, USA:IEEE, 2012:443-448. [27] Marayong P, Li M, Okamura A M, et al. Spatial motion constraints:Theory and demonstrations for robot guidance using virtual fixtures[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2003:1954-1959. [28] Wai H, Hlaing W, Myo A, et al. Variable admittance controller for physical human robot interaction[C]//43rd Annual Conference of the IEEE Industrial Electronics Society. Piscataway, USA:IEEE, 2017:2929-2934. [29] Burdet E, Milner T E. Quantization of human motions and learning of accurate movements[J]. Biological Cybernetics, 1998, 78(4):307-318. [30] Rahman M M, Ikeura R, Mizutani K. Investigating the impedance characteristic of human arm for development of robots to co-operate with human operators[C]//IEEE International Conference on Systems, Man, and Cybernetics. Piscataway, USA:IEEE, 2002:676-681. [31] Duchaine V, Gosselin C M. Investigation of human-robot interaction stability using Lyapunov theory[C]//IEEE InternationalConference on Robotics and Automation. Piscataway, USA:IEEE, 2008:2189-2194.