李东方, 邓宏彬, 潘振华, 彭腾, 王超. 基于改进蛇形曲线的蛇形机器人在流场中避障的轨迹跟踪控制律[J]. 机器人, 2019, 41(4): 433-442.DOI: 10.13973/j.cnki.robot.190271.
LI Dongfang, DENG Hongbin, PAN Zhenhua, PENG Teng, WANG Chao. Trajectory Tracking Control Law for Obstacle Avoidance of a Snake-like Robotin Flow Field Based on an Improved Serpentine Curve. ROBOT, 2019, 41(4): 433-442. DOI: 10.13973/j.cnki.robot.190271.
Abstract:For the problem of trajectory tracking between joints of a snake-like robot in flow field, a trajectory tracking control law based on an improved serpentine curve for snake-like robot to avoid obstacles in flow field is studied. Firstly, considering the external disturbance that the fluid environment may impose on the snake-like robot system, the fluid-structure interaction model of the obstacle passage and the snake-like robot is established in the flow field by using the immersed boundary-lattice Boltzmann method (IB-LBM). Then, a potential function is added to the snake-like robot to avoid obstacles, and an improved serpentine curve equation is used to track the head trajectory for the tail joints. Finally, the effects of different flow field densities, tail swing frequencies of robot and Reynolds numbers on trajectory tracking of the snake-like robot are studied by Matlab simulation and experiment. Theoretical analysis and numerical simulation show that the designed trajectory tracking control law can not only make the snake-like robot track the trajectory of the previous joint when it encounters obstacles, but also stabilize the transverse distance, longitudinal distance and direction angle to achieve the purpose of effectively avoiding obstacles. Moreover, the joints of the snake-like robot will recover the serpentine curve motion after avoiding obstacles, to provide continuous power for the snake-like robot. The simulation and experimental results verify the effectiveness of the trajectory tracking control law.
[1] Wang W, Yang Z Y, Guo L, et al. Gait planning of a scale-driven snake-like robot for winding and obstacle crossing[J]. Advances in Mechanical Engineering, 2017, 9(11). DOI:10.1177/1687814017731038. [2] 李东方,李科伟,邓宏彬,等.基于人工势场与IB-LBM的机器蛇水中2D避障控制算法[J].机器人,2018,40(3):346-359.Li D F, Li K W, Deng H B, et al. The 2D aquatic obstacle avoidance control algorithm of the snake-like robot based on artificial potential field and IB-LBM[J]. Robot. 2018, 40(3):346-359. [3] Mu D D, Wang G F, Fan Y S. Tracking control of podded propulsion unmanned surface vehicle with unknown dynamics and disturbance under input saturation[J]. International Journal of Control, Automation and Systems, 2018, 16(4):1905-1915. [4] Xiao T F, Li X D, Ho J K L. An adaptive discrete-time ILC strategy using fuzzy systems for iteration-varying reference trajectory tracking[J]. International Journal of Control, Automation, and Systems, 2015, 13(1):222-230. [5] 谢德胜,徐友春,万剑,等.基于RTK-GPS的轮式移动机器人轨迹跟随控制[J].机器人,2017,39(2):221-229.Xie D S, Xu Y C, Wan J, et al. Trajectory tracking control of wheeled mobile robots based on RTK-GPS[J]. Robot, 2017, 39(2):221-229. [6] 王萌萌,张曙光.基于模型预测静态规划的自适应轨迹跟踪算法[J].航空学报,2018,39(9):189-197.Wang M M, Zhang S G. Adaptive trajectory tracking algorithm based on tracking model-predictive-static-programming[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):189-197. [7] Guldner J, Utkin V I. Sliding mode control for gradient tracking and robot navigation using artificial potential fields[J]. IEEE Transactions on Robotics and Automation, 1995, 11(2):247-254. [8] Jiang Z P, Nijmeijer H. Tracking control of mobile robots:A case study in backstepping[J]. Automatica, 1997, 33(7):1393-1399. [9] Kanayama Y J, Fahroo F. A new line tracking method for nonholonomic vehicles[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1997:2908-2913. [10] Jiang Z P, Nijmeijer H. A recursive technique for tracking control of nonholonomic systems in chained form[J]. IEEE Transactions on Automatic Control, 1999, 44(2):265-279. [11] Yang J M, Kin J H. Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots[J]. IEEE Transactions on Robotics and Automation, 1999, 15(3):578-587. [12] Corradini M L, Orlando G. Control of mobile robots with uncertainties in the dynamical model:A discrete time sliding modeapproach with experimental results[J]. Control Engineering Practice, 2002, 10(1):23-34. [13] Fukao T. Inverse optimal tracking control of a nonholonomic mobile robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2004:1475-1480. [14] Tian F B, Luo H X, Zhu L D, et al. An efficient immersedboundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments[J]. Journal of Computational Physics, 2011, 230(19):7266-7283. [15] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 1985:500-505. [16] Huang K, Shao K, Zhen S C, et al. A novel approach for modeling and tracking control of a passive-wheel snake robot[J]. Advances in Mechanical Engineering, 2017, 9(3). DOI:10.1177/1687814017693944. [17] Ebrahimpour R, Fesharakifard R, Rezaei S M. An adaptive approach to compensate seam tracking error in robotic welding process by a moving fixture[J]. International Journal of Advanced Robotic Systems, 2018, 15(6):No.1729881418816209. [18] Xu Y Q, Tian F B, Deng Y L. An efficient red blood cell model in the frame of IB-LBM and its application[J]. International Journal of Biomathematics, 2013, 6(1):No.12500611. [19] Yamada H, Hirose S. Study on the 3D shape of active cord mechanism[C]//IEEE International Conference on Robotics and Automation. Piscataway, USA:IEEE, 2006:2890-2895. [20] 叶长龙,马书根,李斌,等.蛇形机器人的转弯和侧移运动研究[J].机械工程学报,2004,40(10):119-123,128.Ye C L, Ma S G, Li B, et al. Study on turning and sidewise motion of a snake-like robot[J]. Chinese Journal of Mechanical Engineering, 2004, 40(10):119-123,128. [21] 郁树梅,王明辉,马书根,等.水陆两栖蛇形机器人的研制及其陆地和水下步态[J].机械工程学报,2012,48(9):18-25.Yu S M, Wang M H, Ma S G, et al. Development of an amphibious snake-like robot and its gaits on ground and in water[J]. Chinese Journal of Mechanical Engineering, 2012, 48(9):18-25. [22] Xu X D, Huang P F. Coordinated control method of space-tethered robot system for tracking optimal trajectory[J]. International Journal of Control, Automation, and Systems, 2015, 13(1):182-193. [23] Abdulwahhab O W, Abbas N H. Design and stability analysis of a fractional order state feedback controller for trajectory tracking of a differential drive robot[J]. International Journal of Control, Automation, and Systems, 2018, 16(6):2790-2800. [24] Kelasidi E, Liljeback P, Pettersen K Y, et al. Integral line-of-sight guidance for path following control of underwater snake robots:Theory and experiments[J]. IEEE Transactions on Robotics, 2017, 33(3):610-628. [25] Zhang H J, Cheng B, Zhao J G. Optimal trajectory generation for time-to-contact based aerial robotic perching[J]. Bioinspiration & Biomimetics, 2019, 14(1):No.016008.