Kinematics and Workspace Analysis of a Metamorphic Parallel Mechanism with Three Configurations
TIAN Haibo1,2, MA Hongwei1, MA Kun1, WEI Juan1
1. College of Mechanical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China;
2. The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai 200092, China
Abstract:It is difficult for conventional parallel mechanisms to improve the terrain adaptability of robotic legs due to its poor motion flexibility. Therefore, a 2-PrRS+PR(P)S metamorphic parallel mechanism is presented for robotic legs based on rotatable-axis revolute pairs. Firstly, the degrees of freedom of three configurations of the mechanism are analyzed. Secondly, the inverse kinematic model of the mechanism is established and the constraint conditions and the ranges of the key parameters are given. Furthermore, the workspace point-cloud of the mechanism is obtained by Monte Carlo method, and the volume of the workspace is calculated using the adaptive mesh method. Compared with the parallel mechanism without metamorphic properties, the shape of the calculated workspace is obviously different under the same parameters, and the workspace volume is 29.36% larger. Finally, the influences of the key structural parameters on the workspace volume are analyzed. It provides the basis for the dimension synthesis of the metamorphic parallel mechanism.
[1] Saafi H, Laribi M A, Zeghloul S. Forward kinematic model improvement of a spherical parallel manipulator using an extra sensor[J]. Mechanism and Machine Theory, 2015, 91(9):102-119.
[2] Yoneda K, Ito F, Ota Y, et al. Steep slope locomotion and manipulation mechanism with minimum degrees of freedom[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 1999:1896-1901.
[3] Sugahara Y, Carbone G, Hashimoto K, et al. Experimental stiffness measurement of WL-L6RⅡ biped walking vehicle during walking operation[J]. Journal of Robotics and Mechatronics, 2007, 19(3):272-280.
[4] Rushworth A, Axinte D, Raffles M, et al. A concept for actuating and controlling a leg of a novel walking parallel kinematic machine tool[J]. Mechatronics, 2016, 40(12):63-77.
[5] Cheng G, Ge S, Yu J. Sensitivity analysis and kinematic calibration of 3-UCR symmetrical parallel robot leg[J]. Journal of Mechanical Science and Technology, 2011, 25(7):1647-1655.
[6] 王洪波,齐政彦,胡正伟,等.并联腿机构在四足/两足可重组步行机器人中的应用[J].机械工程学报, 2009, 45(8):24-30. Wang H B, Qi Z Y, Hu Z W, et al. Application of parallel leg mechanisms in quadruped/biped reconfigurable walking robot[J]. Journal of Mechanical Engineering, 2009, 45(8):24-30.
[7] 崔冰艳,金振林.基于正交机构的机器人肩关节静力学分析与结构参数设计[J].光学精密工程, 2011, 19(1):77-82. Cui B Y, Jin Z L. Statics analysis and structure parameter design of robot shoulder joint based on orthogonal mechanism[J]. Optics and Precision Engineering, 2011, 19(1):77-82.
[8] 张成军,李艳文.一种基于3-RPC并联机构的新型步行机器人[J].机械工程学报, 2011, 47(15):25-30. Zhang C J, Li Y W. A new walking robot based on 3-RPC parallel mechanism[J]. Journal of Mechanical Engineering, 2011, 47(15):25-30.
[9] 荣誉,金振林,曲梦可.六足步行机器人的并联机械腿设计[J].光学精密工程, 2012, 20(7):1532-1541. Rong Y, Jin Z L, Qu M K. Design of parallel mechanical leg of six-legged robot[J]. Optics and Precision Engineering, 2012, 20(7):1532-1541.
[10] 李研彪,刘毅,赵章风,等.基于空间模型技术的拟人机械腿的运动学传递性能分析[J].农业工程学报, 2013, 29(2):17-23. Li Y B, Liu Y, Zhao Z F, et al. Kinematics transmission analysis on anthropopathic mechanical leg based on spatial model technique[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(2):17-23.
[11] Dai J S, Jones J R. Mobility in metamorphic mechanism of foldable/erectable kinds[J]. Journal of Mechanical Design, 1999, 121(3):375-382.
[12] 李秦川,陈巧红,武传宇,等.变自由度4-xPxRxRxRyRN并联机构[J].机械工程学报, 2009, 45(1):83-87. Li Q C, Chen Q H, Wu C Y, et al. 4-xPxRxRxRyRN parallel mechanism with variable mobility[J]. Journal of Mechanical Engineering, 2009, 45(1):83-87.
[13] Zhang K T, Dai J S, Fang Y F. Topology and constraint analysis of phase change in the metamorphic chain and its evolved mechanism[J]. Journal of Mechanical Design, 2010, 132(12). DOI:10.1115/1.4002691.
[14] Ding X L, Yang Y, Dai J S. Topology and kinematic analysis of color-changing ball[J]. Mechanism and Machine Theory, 2011, 46(1):67-81.
[15] Gan D M, Dias J, Seneviratne L. Unified kinematics and optimal design of a 3rRPS metamorphic parallel mechanism with a reconfigurable revolute joint[J]. Mechanism and Machine Theory, 2016, 96(2):239-254.
[16] 畅博彦,金国光,王艳.并联式球面变胞机构及其完整雅可比矩阵[J].农业机械学报, 2013, 44(10):260-265. Chang B Y, Jin G G, Wang Y. Parallel spherical metamorphic mechanism and its complete Jacobian matrix[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10):260-265.
[17] Jiang Q M, Gosselin C M. Determination of the maximal singularity-free orientation workspace for the Gough-Stewart platform[J]. Mechanism and Machine Theory, 2009, 44(6):1281-1293.
[18] Yoon J W, Ryu J, Hwang Y K. Optimum design of 6-DOF parallel manipulator with translational/rotational workspaces for haptic device application[J]. Journal of Mechanical Science and Technology, 2010, 24(5):1151-1162.
[19] Zhang C, Zhang L. Kinematics analysis and workspace investigation of a novel 2-DOF parallel manipulator applied in vehicle driving simulator[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(4):113-120.
[20] 温海营,丛明,王贵飞,等.冗余驱动仿下颌运动机器人工作空间分析及试验验证[J].机器人, 2015, 37(3):286-297. Wen H Y, Cong M, Wang G F, et al. Workspace analysis and experimental verification of a redundantly actuated jaw movement robot[J]. Robot, 2015, 37(3):286-297.
[21] Chaudhury A N, Ghosal A. Optimum design of multi-degreeof-freedom closed-loop mechanisms and parallel manipulators for a prescribed workspace using Monte Carlo method[J]. Mechanism and Machine Theory, 2017, 118(12):115-138.
[22] Milica L, Nastase A, Andrei G. A new insight into the geometric models and workspace volume of the 6RSS manipulator by disjunction of the translational and orientation subspaces[J]. Mechanism and Machine Theory, 2018, 121(3):804-828.
[23] 刘志忠,柳洪义,罗忠,等.机器人工作空间求解的蒙特卡洛法改进[J].农业机械学报, 2013, 44(1):230-235. Liu Z Z, Liu H Y, Luo Z, et al. Improvement on Monte Carlo method for robot workspace determination[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(1):230-235.
[24] 康件丽,陈国强,赵俊伟. 3-PRS机构工作空间的蒙特卡洛方法分析[J].河南理工大学学报(自然科学版), 2014, 33(4):478-481. Kang J L, Chen G Q, Zhao J W. Analysis on workspace of 3-PRS mechanism based on Monte Carlo method[J]. Journal of Henan Polytechnic University (Natural Science), 2014, 33(4):478-481.
[25] 田海波,马宏伟,魏娟.串联机器人机械臂工作空间与结构参数研究[J].农业机械学报, 2013, 44(4):196-201. Tian H B, Ma H W, Wei J. Workspace and structural parameters analysis for the manipulator of a serial robot[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4):196-201.