李奇敏, 任灏宇, 蒲文东, 蒋建新. 具有弹性连杆机构的四足机器人对角小跑步态控制[J]. 机器人, 2019, 41(2): 197-205.DOI: 10.13973/j.cnki.robot.180185.
LI Qimin, REN Haoyu, PU Wendong, JIANG Jianxin. Trotting Gait Control of the Quadruped Robot with an Elastic Linkage. ROBOT, 2019, 41(2): 197-205. DOI: 10.13973/j.cnki.robot.180185.
Abstract:In order to improve the mobility and shock resistance of quadruped robots, a quadruped robot with elastic linkages and a cable-driven system is designed, named LCS (linkage-cable-spring) quadruped robot. And a speed control strategy is proposed based on the stance angle, and also the centroid height control strategy based on energy compensation, referring to SLIP (spring loaded inverted pendulum) model. The motion stability of trotting gait is improved by the attitude control strategy. Finally, a steady trotting gait is realized by simulation under a given forward speed. Meanwhile, an experimental prototype platform of the LCS quadruped robot is built, and the walking experiment of the stepping and trotting gaits is completed. The experimental results show that the roll and pitch angles of the LCS quadruped robot can be controlled within 2°, and the robot can steadily negotiate small obstacles with the size of 10mm×10mm.
[1] Luo Y, Li Q M, Liu Z X. Design and optimization of wheel-legged robot:Rolling-Wolf[J]. Chinese Journal of Mechanical Engineering, 2014, 27(6):1133-1142.
[2] Koo I M, Trong T D, Kang T H, et al. Control of a quadruped walking robot based on biologically inspired approach[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, USA:IEEE, 2007:2975-2980.
[3] Zhang X L, Zheng H J, Xu G, et al. A biological inspired quadruped robot:Structure and control[C]//IEEE International Conference on Robotics and Biomimetics. Piscataway, USA:IEEE, 2005:387.
[4] Ananthanarayanan A, Azadi M, Kim S B. Towards a bio-inspired leg design for high-speed running[J]. Bioinspiration & Biomimetics, 2012, 7(4). DOI:10.1088/1748-3182/7/4/046005.
[5] Seok S O, Wang A, Chuah M, et al. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(3):1117-1129.
[6] Hubicki C, Grimes J, Jones M, et al. ATRIAS:Design and validation of a tether-free 3D-capable spring-mass bipedal robot[J]. International Journal of Robotics Research, 2016, 35(12):1497-1521.
[7] Topping T T, Vasilopoulos V, De A, et al. Towards bipedal behavior on a quadrupedal platform using optimal control[C]//Proceedings of SPIE, Vol.9837. Bellingham, USA:SPIE, 2016. DOI:10.1117/12.2231103.
[8] Wu J X, Yao Y N, Ruan Q, et al. Design and optimization of a dual quadruped vehicle based on whole close-chain mechanism[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2017, 231(19). DOI:10.1177/0954406216650473.
[9] 柏龙,龙樟,陈晓红,等.连续电驱动四足机器人腿部机构设计与分析[J].机器人,2018,40(2):136-145.Bai L, Long Z, Chen X H, et al. Design and analysis of a leg mechanism for a continuous electrically-driven quadruped robot[J]. Robot, 2018, 40(2):136-145.
[10] 周坤.面向未知复杂地形的四足机器人运动规划方法研究[D].杭州:浙江大学,2017.Zhou K. Research on motion planning method for quadruped robots walking on unknown rough terrain[D]. Hangzhou:Zhejiang University, 2017.
[11] McNeill A R. Principles of animal locomotion[M]. Princeton, USA:Princeton University Press, 2006.
[12] 张立勋,路敦民,王岚,等.基于差动机构的五连杆式人机合作机器人的动力学分析[J].机器人,2004, 26(2):123-126.Zhang L X, Lu D M, Wang L, et al. Dynamics analysis of five-bar cobot based on differential mecahanism[J]. Robot, 2004, 26(2):123-126.
[13] Raibert M H, Tello E R. Legged robots that balance[M]. Cambridge, USA:MIT Press, 1986:89.
[14] Ankarali M M. Control of hexapedal pronking through a dynamically embedded spring loaded inverted pendulum template[D]. Cankaya, Turkey:Middle East Technical University, 2010. DOI:10.13140/RG.2.1.3737.7442.
[15] Farley C T, Glasheen J, McMahon T A. Running springs:Speed and animal size[J]. Journal of Experimental Biology, 1993, 185:71-86.
[16] Koechling J, Marc H. How fast can a legged robot run?[M]//NATO ASI, Vol.102. Berlin, Germany:Springer-Verlag, 1993:239-269.
[17] 韩斌.外部冲击作用下四足仿生机器人动态稳定控制方法研究[D].武汉:华中科技大学,2013.Han B. Dynamically stable control of bionic quadruped robots under external impact[D]. Wuhan:Huazhong University of Science and Technology, 2013.
[18] 李满天,蒋振宇,王鹏飞,等.基于多虚拟元件的直腿四足机器人trot步态控制[J].吉林大学学报:工学版,2015,45(5):1502-1511.Li M T, Jiang Z Y, Wang P F, et al. Control of quadruped robot with straight legs in trotting gait based on virtual elements[J]. Journal of Jilin University:Engineering and Technology Edition, 2015, 45(5):1502-1511.
[19] 刘斌,荣学文,柴汇.基于虚拟模型控制的四足机器人缓冲策略[J].机器人,2016,38(6):659-669.Liu B, Rong X W, Chai H. A buffering strategy for quadrupedal robots based on virtual model control[J]. Robot, 2016, 38(6):659-669.