Abstract:For the problems of the master-slave upper-limb exoskeleton rehabilitation robot, such as the information acquisition of the main arm, and the rapid response of the slave arm, this paper proposes a motion intention modeling method based on the information of joint pose, speed and force/torque, and a control strategy of rehabilitation training based on fuzzy compensation. Firstly, a structure of master-slave dual arm isomorphic rehabilitation robot is proposed according to the principle of ergonomics. Then the kinematics model of the master-slave arm is set up in Cartesian space using D-H algorithm, where the mapping relationship from the motion intention information of the patient's healthy limb to the action of the slave arm joints is given for human-machine cooperation. The patient-master-slave arm cooperative control strategy is then proposed based on the fuzzy compensation algorithm, taking the moment of the patient's intentional motion as the input parameter. The stability of the control system is finally proved by Lyapunov theorem. The simulation results show that the slave arm of the rehabilitation robot can follow the motion of the master arm according to the patient's motion intention, and effectively avoid the misoperation and the secondary injury to the affected limb. The experiment verifies that the slave arm has a good trajectory approximation effect and its trajectory is smooth without severe fluctuation.
[1] 郑德松,董静,刘国荣.不同针刺方案在中风痉挛性偏瘫康复治疗中的研究进展[J].现代中西医结合杂志,2017(1):109-111.Zheng D S, Dong J, Liu G R. Research progress in the rehabilitation treatment of spastic hemiplegia in apoplexy[J]. Modern Chinese and Western Medicine Journal, 2017(1):109-111.
[2] 李宏伟,张韬,冯垚娟,等.外骨骼下肢康复机器人在脑卒中康复中的应用进展[J].中国康复理论与实践,2017,23(7):788-791.Li H W, Zhang T, Feng Y J, et al. Application of exoskeletal lower limb rehabilitation robot in stroke rehabilitation[J]. Chinese Rehabilitation Theory and Practice, 2017, 23(7):788-791.
[3] 杨启志,曹电锋,赵金海.上肢康复机器人研究现状的分析[J].机器人,2013,35(5):630-640.Yang Q Z, Cao D F, Zhao J H. Analysis of the status of the research on the upper limb rehabilitation robot[J]. Robot, 2013, 35(5):630-640.
[4] 宋遒志,王晓光,王鑫,等.多关节外骨骼助力机器人发展现状及关键技术分析[J].兵工学报,2016,37(1):172-185.Song Q Z, Wang X G, Wang X, et al. Development of multi-joint exoskeleton-assisted robot and its key technology analysis:An overview[J]. Acta Armamentarii, 2016, 37(1):172-185.
[5] Sheng B, Zhang Y, Meng W, et al. Bilateral robots for upper-limb stroke rehabilitation:State of the art and future prospects[J]. Medical Engineering & Physics, 2016, 38(7):587-606.
[6] Lo H S, Xie S Q. Exoskeleton robots for upper-limb rehabilitation:State of the art and future prospects[J]. Medical Engineering & Physics, 2012, 34(3):261-268.
[7] Jiang J G, Huo B, Ma X F, et al. Recent patents on exoskeletal rehabilitation robot for upper limb[J]. Recent Patents on Mechanical Engineering, 2017, 10(3):173-181.
[8] Perry J C, Rosen J, Burns S. Upper-limb powered exoskeleton design[J]. IEEE/ASME Transactions on Mechatronics, 2007, 12(4):408-417.
[9] Reinkensmeyer D J, Kahn L E, Averbuch M, et al. Understanding and treating arm movement impairment after chronic brain injury:Progress with the ARM guide[J]. Journal of Rehabilitation Research and Development, 2000, 37(6):653-662.
[10] Nef T, Mihelj M, Riener R. ARMin:A robot for patient-cooperative arm therapy[J]. Medical & Biological Engineering & Computing, 2007, 45(9):887-900.
[11] Khan A M, Yun D W, Zuhaib K M, et al. Estimation of desired motion intention and compliance control for upper limb assist exoskeleton[J]. International Journal of Control, Automation, and Systems, 2017, 15(2):802-814.
[12] Khan A M, Usman M, Ali A, et al. Muscle circumference sensor and model reference-based adaptive impedance control for upper limb assist exoskeleton robot[J]. Advanced Robotics, 2016, 30(24):1515-1529.
[13] 李庆玲,叶腾茂,杜志江,等.外骨骼式上肢康复机器人力辅助控制[J].哈尔滨工程大学学报,2009,30(2):166-170.Li Q L, Ye T M, Du Z J, et al. Exoskeletal rehabilitation robot for upper limbs auxiliary control[J]. Journal of Harbin Engineering University, 2009, 30(2):166-170.
[14] 王婷.复现人体上肢运动协同特性的外骨骼康复机器人设计[D].武汉:华中科技大学,2016.Wang T. Design of exoskeleton rehabilitation robots that reproduce the synergistic characteristics of human upper limb movement[D]. Wuhan:Huazhong University of Science and Technology, 2016.
[15] 潘礼正,宋爱国,徐国政,等.上肢康复机器人实时安全控制[J].机器人,2012,34(2):197-203.Pan L Z, Song A G, Xu G Z, et al. Real-time safety control of upper-limb rehabilitation robot[J]. Robot, 2012, 34(2):197-203.
[16] 徐国政,宋爱国,李会军.基于模糊逻辑的上肢康复机器人阻抗控制实验研究[J].机器人,2010,32(6):792-798.Xu G Z, Song A G, Li H J. Experimental study on fuzzy-logic-based impedance control for upper-limb rehabilitation robot[J]. Robot, 2010, 32(6):792-798.
[17] 熊有伦.机器人学[M].北京:机械工业出版社,1993.Xiong Y L. Robotics[M]. Beijing:China Machine Press, 1993.
[18] 杨宇.面向心脏手术医疗机器人的异构式主从控制研究[D].哈尔滨:哈尔滨工业大学,2015.Yang Y. Research on heterogeneous master slave control for cardiac surgery medical robot[D]. Harbin:Harbin Institute of Technology, 2015.
[19] 刘金琨.智能控制[M].北京:电子工业出版社,2014.Liu J K. Intelligent control[M]. Beijing:Publishing House of Electronics Industry, 2014.
[20] 王晓峰,李醒,王建辉.基于无模型自适应的外骨骼式上肢康复机器人主动交互训练控制方法[J].自动化学报,2016,42(12):1899-1914.Wang X F, Li X, Wang J H. Active interaction exercise control of exoskeleton upper limbs rehabilitation robot using model-free adaptive methods[J]. Acta Automatica Sinica, 2016, 42(12):1899-1914.
[21] Yoo B K, Ham W C. Adaptive control of robot manipulator using fuzzy compensator[J]. IEEE Transactions on Fuzzy Sys-tems, 2000, 8(2):186-199.
[22] 王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003.Wang L X. Fuzzy system and fuzzy control course[M]. Beijing:Tsinghua University Press, 2003.